Réciprocité Frobenius
Réciprocité Frobenius (Redirected from Frobenius reciprocity theorem) Aller à la navigation Aller à la recherche En mathématiques, and in particular representation theory, Frobenius reciprocity is a theorem expressing a duality between the process of restricting and inducting. It can be used to leverage knowledge about representations of a subgroup to find and classify representations of "large" groups that contain them. It is named for Ferdinand Georg Frobenius, the inventor of the representation theory of finite groups.
Contenu 1 Déclaration 1.1 Character theory 1.2 Module theory 1.3 Category theory 2 Voir également 3 Remarques 4 References Statement Character theory The theorem was originally stated in terms of character theory. Let G be a finite group with a subgroup H, laisser {nom de l'opérateur de style d'affichage {Res} _{H}^{g}} denote the restriction of a character, or more generally, class function of G to H, et laissez {nom de l'opérateur de style d'affichage {Ind} _{H}^{g}} denote the induced class function of a given class function on H. For any finite group A, there is an inner product {displaystyle langle -,-rangle _{UN}} on the vector space of class functions {displaystyle Ato mathbb {C} } (described in detail in the article Schur orthogonality relations). À présent, for any class functions {style d'affichage psi :Hto mathbb {C} } et {style d'affichage varphi :Gto mathbb {C} } , the following equality holds: {displaystyle langle operatorname {Ind} _{H}^{g}psi ,varphi rangle _{g}=langle psi ,nom de l'opérateur {Res} _{H}^{g}varphi rangle _{H}} .[1][2] Autrement dit, {nom de l'opérateur de style d'affichage {Ind} _{H}^{g}} et {nom de l'opérateur de style d'affichage {Res} _{H}^{g}} are Hermitian adjoint.
show Proof of Frobenius reciprocity for class functions Module theory See also: Change of rings § Relation between the extension of scalars and the restriction of scalars As explained in the section Representation theory of finite groups#Representations, modules and the convolution algebra, the theory of the representations of a group G over a field K is, in a certain sense, equivalent to the theory of modules over the group algebra K[g].[3] Par conséquent, there is a corresponding Frobenius reciprocity theorem for K[g]-modules.
Let G be a group with subgroup H, let M be an H-module, and let N be a G-module. In the language of module theory, the induced module {style d'affichage K[g]otimes _{K[H]}M} corresponds to the induced representation {nom de l'opérateur de style d'affichage {Ind} _{H}^{g}} , whereas the restriction of scalars {style d'affichage {_{K[H]}}N} corresponds to the restriction {nom de l'opérateur de style d'affichage {Res} _{H}^{g}} . Accordingly, the statement is as follows: The following sets of module homomorphisms are in bijective correspondence: {nom de l'opérateur de style d'affichage {Hom} _{K[g]}(K[g]otimes _{K[H]}M,N)cong operatorname {Hom} _{K[H]}(M,{_{K[H]}}N)} .[4][5] As noted below in the section on category theory, this result applies to modules over all rings, not just modules over group algebras.
Category theory Let G be a group with a subgroup H, et laissez {nom de l'opérateur de style d'affichage {Res} _{H}^{g},nom de l'opérateur {Ind} _{H}^{g}} be defined as above. For any group A and field K let {style d'affichage {textbf {Rep}}_{UN}^{K}} denote the category of linear representations of A over K. There is a forgetful functor {style d'affichage {commencer{aligné}nom de l'opérateur {Res} _{H}^{g}:{textbf {Rep}}_{g}&longrightarrow {textbf {Rep}}_{H}\(V,Rho )&longmapsto operatorname {Res} _{H}^{g}(V,Rho )fin{aligné}}} This functor acts as the identity on morphisms. There is a functor going in the opposite direction: {style d'affichage {commencer{aligné}nom de l'opérateur {Ind} _{H}^{g}:{textbf {Rep}}_{H}&longrightarrow {textbf {Rep}}_{g}\(O,oui )&longmapsto operatorname {Ind} _{H}^{g}(O,oui )fin{aligné}}} These functors form an adjoint pair {nom de l'opérateur de style d'affichage {Ind} _{H}^{g}dashv operatorname {Res} _{H}^{g}} .[6][7] In the case of finite groups, they are actually both left- and right-adjoint to one another. This adjunction gives rise to a universal property for the induced representation (pour les détails, see Induced representation#Properties).
In the language of module theory, the corresponding adjunction is an instance of the more general relationship between restriction and extension of scalars.
See also Mathematics portal See Restricted representation and Induced representation for definitions of the processes to which this theorem applies. See Representation theory of finite groups for a broad overview of the subject of group representations. See Selberg trace formula and the Arthur-Selberg trace formula for generalizations to discrete cofinite subgroups of certain locally compact groups. Notes ^ Serre 1977, p. 56. ^ Sengupta 2012, p. 246. ^ Specifically, there is an isomorphism of categories between K[g]-Mod and RepGK, as described on the pages Isomorphism of categories#Category of representations and Representation theory of finite groups#Representations, modules and the convolution algebra. ^ James, Gordon Douglas (1945–2001). Representations and characters of groups. Liebeck, M. O. (Martin W.) (2sd éd.). Cambridge, ROYAUME-UNI: la presse de l'Universite de Cambridge. ISBN 9780521003926. OCLC 52220683. ^ Sengupta 2012, p. 245. ^ "Frobenius reciprocity on planetmath.org". planetmath.org. Récupéré 2017-11-02. ^ "Frobenius reciprocity in nLab". ncatlab.org. Récupéré 2017-11-02. References Serre, Jean-Pierre (1926–1977). Linear representations of finite groups. New York: Springer Verlag. ISBN 0387901906. OCLC 2202385. Sengupta, Ambre (2012). Représenter des groupes finis : une introduction semi-simple. New York. est ce que je:10.1007/978-1-4614-1231-1_8. ISBN 9781461412304. OCLC 769756134. Weisstein, Éric. "Induced Representation". mathworld.wolfram.com. Récupéré 2017-11-02. Catégories: Representation theory of finite groupsTheorems in representation theoryAdjoint functors
Si vous voulez connaître d'autres articles similaires à Réciprocité Frobenius vous pouvez visiter la catégorie Adjoint functors.
Laisser un commentaire