# Frobenius determinant theorem

Frobenius determinant theorem In mathematics, the Frobenius determinant theorem was a conjecture made in 1896 by the mathematician Richard Dedekind, who wrote a letter to F. G. Frobenius about it (reproduced in (Dedekind 1968), with an English translation in (Curtis 2003, p. 51)).

If one takes the multiplication table of a finite group G and replaces each entry g with the variable xg, and subsequently takes the determinant, then the determinant factors as a product of n irreducible polynomials, where n is the number of conjugacy classes. Moreover, each polynomial is raised to a power equal to its degree. Frobenius proved this surprising conjecture, and it became known as the Frobenius determinant theorem.

Formal statement Let a finite group {displaystyle G} have elements {displaystyle g_{1},g_{2},dots ,g_{n}} , and let {displaystyle x_{g_{i}}} be associated with each element of {displaystyle G} . Define the matrix {displaystyle X_{G}} with entries {displaystyle a_{ij}=x_{g_{i}g_{j}}} . Then {displaystyle det X_{G}=prod _{j=1}^{r}P_{j}(x_{g_{1}},x_{g_{2}},dots ,x_{g_{n}})^{deg P_{j}}} where the {displaystyle P_{j}} 's are pairwise non-proportional irreducible polynomials and {displaystyle r} is the number of conjugacy classes of G.[1] References ^ Etingof, Theorem 5.4. Curtis, Charles W. (2003), Pioneers of Representation Theory: Frobenius, Burnside, Schur, and Brauer, History of Mathematics, Providence, R.I.: American Mathematical Society, doi:10.1090/S0273-0979-00-00867-3, ISBN 978-0-8218-2677-5, MR 1715145 Review Dedekind, Richard (1968) [1931], Fricke, Robert; Noether, Emmy; Ore, öystein (eds.), Gesammelte mathematische Werke. Bände I–III, New York: Chelsea Publishing Co., JFM 56.0024.05, MR 0237282 Etingof, Pavel. Lectures on Representation Theory. Frobenius, Ferdinand Georg (1968), Serre, J.-P. (ed.), Gesammelte Abhandlungen. Bände I, II, III, Berlin, New York: Springer-Verlag, ISBN 978-3-540-04120-7, MR 0235974 Categories: Theorems in algebraDeterminantsTheorems in group theoryMatrix theory

Si quieres conocer otros artículos parecidos a Frobenius determinant theorem puedes visitar la categoría Determinants.

Subir

Utilizamos cookies propias y de terceros para mejorar la experiencia de usuario Más información