Freudenthal suspension theorem

Freudenthal suspension theorem This article includes a list of references, leitura relacionada ou links externos, mas suas fontes permanecem obscuras porque faltam citações em linha. Ajude a melhorar este artigo introduzindo citações mais precisas. (Junho 2020) (Saiba como e quando remover esta mensagem de modelo) Na matemática, and specifically in the field of homotopy theory, the Freudenthal suspension theorem is the fundamental result leading to the concept of stabilization of homotopy groups and ultimately to stable homotopy theory. It explains the behavior of simultaneously taking suspensions and increasing the index of the homotopy groups of the space in question. It was proved in 1937 by Hans Freudenthal.
The theorem is a corollary of the homotopy excision theorem.
Conteúdo 1 Declaração do teorema 1.1 Prova 1.2 Corolário 1 1.3 Corolário 2 2 References Statement of the theorem Let X be an n-connected pointed space (a pointed CW-complex or pointed simplicial set). O mapa {displaystyle Xto Omega (Sigma X)} induces a map {estilo de exibição pi _{k}(X)para pi_{k}(Ómega (Sigma X))} on homotopy groups, where Ω denotes the loop functor and Σ denotes the reduced suspension functor. The suspension theorem then states that the induced map on homotopy groups is an isomorphism if k ≤ 2n and an epimorphism if k = 2n + 1.
A basic result on loop spaces gives the relation {estilo de exibição pi _{k}(Ómega (Sigma X))cong pi _{k+1}(Sigma X)} so the theorem could otherwise be stated in terms of the map {estilo de exibição pi _{k}(X)para pi_{k+1}(Sigma X),} with the small caveat that in this case one must be careful with the indexing.
Proof As mentioned above, the Freudenthal suspension theorem follows quickly from homotopy excision; this proof is in terms of the natural map {estilo de exibição pi _{k}(X)para pi_{k+1}(Sigma X)} . If a space {estilo de exibição X} é {estilo de exibição m} -conectado, then the pair of spaces {estilo de exibição (CX,X)} é {estilo de exibição (n+1)} -conectado, Onde {displaystyle CX} is the reduced cone over {estilo de exibição X} ; this follows from the relative homotopy long exact sequence. We can decompose {displaystyle Sigma X} as two copies of {displaystyle CX} , dizer {estilo de exibição (CX)_{+},(CX)_{-}} , whose intersection is {estilo de exibição X} . Então, homotopy excision says the inclusion map: {estilo de exibição ((CX)_{+},X)subset (Sigma X,(CX)_{-})} induces isomorphisms on {estilo de exibição pi _{eu},eu<2n+2} and a surjection on {displaystyle pi _{2n+2}} . From the same relative long exact sequence, {displaystyle pi _{i}(X)=pi _{i+1}(CX,X),} and since in addition cones are contractible, {displaystyle pi _{i}(Sigma X,(CX)_{-})=pi _{i}(Sigma X).} Putting this all together, we get {displaystyle pi _{i}(X)=pi _{i+1}((CX)_{+},X)=pi _{i+1}((Sigma X,(CX)_{-})=pi _{i+1}(Sigma X)} for {displaystyle i+1<2n+2} , i.e. {displaystyle ileqslant 2n} , as claimed above; for {displaystyle i=2n+1} the left and right maps are isomorphisms, regardless of how connected {displaystyle X} is, and the middle one is a surjection by excision, so the composition is a surjection as claimed. Corollary 1 Let Sn denote the n-sphere and note that it is (n − 1)-connected so that the groups {displaystyle pi _{n+k}(S^{n})} stabilize for {displaystyle ngeqslant k+2} by the Freudenthal theorem. These groups represent the kth stable homotopy group of spheres. Corollary 2 More generally, for fixed k ≥ 1, k ≤ 2n for sufficiently large n, so that any n-connected space X will have corresponding stabilized homotopy groups. These groups are actually the homotopy groups of an object corresponding to X in the stable homotopy category. References Freudenthal, H. (1938), "Über die Klassen der Sphärenabbildungen. I. Große Dimensionen", Compositio Mathematica, 5: 299–314. Goerss, P. G.; Jardine, J. F. (1999), Simplicial Homotopy Theory, Progress in Mathematics, vol. 174, Basel-Boston-Berlin: Birkhäuser. Hatcher, Allen (2002), Algebraic Topology, Cambridge: Cambridge University Press, ISBN 0-521-79540-0. Whitehead, G. W. (1953), "On the Freudenthal Theorems", Annals of Mathematics, 57 (2): 209–228, doi:10.2307/1969855, JSTOR 1969855, MR 0055683. Categories: Theorems in homotopy theory
Se você quiser conhecer outros artigos semelhantes a Freudenthal suspension theorem você pode visitar a categoria Theorems in homotopy theory.
Deixe uma resposta