Excision theorem

Excision theorem In algebraic topology, um ramo da matemática, the excision theorem is a theorem about relative homology and one of the Eilenberg–Steenrod axioms. Given a topological space {estilo de exibição X} and subspaces {estilo de exibição A} e {estilo de exibição U} de tal modo que {estilo de exibição U} is also a subspace of {estilo de exibição A} , the theorem says that under certain circumstances, we can cut out (excise) {estilo de exibição U} from both spaces such that the relative homologies of the pairs {estilo de exibição (Xsetminus U,Asetminus U)} em {estilo de exibição (X,UMA)} são isomórficos.

This assists in computation of singular homology groups, as sometimes after excising an appropriately chosen subspace we obtain something easier to compute.

Conteúdo 1 Teorema 1.1 Declaração 1.2 Proof Sketch 2 Formulários 2.1 Eilenberg–Steenrod Axioms 2.2 Mayer-Vietoris Sequences 3 Veja também 4 Referências 5 Bibliography Theorem Statement If {displaystyle Usubseteq Asubseteq X} are as above, nós dizemos isso {estilo de exibição U} can be excised if the inclusion map of the pair {estilo de exibição (Xsetminus U,Asetminus U)} em {estilo de exibição (X,UMA)} induces an isomorphism on the relative homologies: {estilo de exibição H_{n}(Xsetminus U,Asetminus U)cong H_{n}(X,UMA)} The theorem states that if the closure of {estilo de exibição U} is contained in the interior of {estilo de exibição A} , então {estilo de exibição U} can be excised.

Muitas vezes, subspaces that do not satisfy this containment criterion still can be excised—it suffices to be able to find a deformation retract of the subspaces onto subspaces that do satisfy it.

Proof Sketch The proof of the excision theorem is quite intuitive, though the details are rather involved. The idea is to subdivide the simplices in a relative cycle in {estilo de exibição (X,UMA)} to get another chain consisting of "menor" simples, and continuing the process until each simplex in the chain lies entirely in the interior of {estilo de exibição A} or the interior of {displaystyle Xsetminus U} . Since these form an open cover for {estilo de exibição X} and simplices are compact, we can eventually do this in a finite number of steps. This process leaves the original homology class of the chain unchanged (this says the subdivision operator is chain homotopic to the identity map on homology). In the relative homology {estilo de exibição H_{n}(X,UMA)} , então, this says all the terms contained entirely in the interior of {estilo de exibição U} can be dropped without affecting the homology class of the cycle. This allows us to show that the inclusion map is an isomorphism, as each relative cycle is equivalent to one that avoids {estilo de exibição U} entirely.

Applications Eilenberg–Steenrod Axioms The excision theorem is taken to be one of the Eilenberg–Steenrod Axioms.

Mayer-Vietoris Sequences The Mayer–Vietoris sequence may be derived with a combination of excision theorem and the long-exact sequence.[1] See also Homotopy excision theorem References ^ See Hatcher 2002, p.149, for example Bibliography Joseph J. Rotman, Uma Introdução à Topologia Algébrica, Springer-Verlag, ISBN 0-387-96678-1 Allen Hatcher, Algebraic Topology. Cambridge University Press, Cambridge, 2002. Categorias: Homology theoryTheorems in topology

Se você quiser conhecer outros artigos semelhantes a Excision theorem você pode visitar a categoria Homology theory.

Deixe uma resposta

seu endereço de e-mail não será publicado.

Ir para cima

Usamos cookies próprios e de terceiros para melhorar a experiência do usuário Mais informação