# Excision theorem

Excision theorem In algebraic topology, une branche des mathématiques, the excision theorem is a theorem about relative homology and one of the Eilenberg–Steenrod axioms. Given a topological space {style d'affichage X} and subspaces {style d'affichage A} et {style d'affichage U} tel que {style d'affichage U} is also a subspace of {style d'affichage A} , the theorem says that under certain circumstances, we can cut out (excise) {style d'affichage U} from both spaces such that the relative homologies of the pairs {style d'affichage (Xsetminus U,Asetminus U)} dans {style d'affichage (X,UN)} sont isomorphes.

This assists in computation of singular homology groups, as sometimes after excising an appropriately chosen subspace we obtain something easier to compute.

Contenu 1 Théorème 1.1 Déclaration 1.2 Proof Sketch 2 Applications 2.1 Eilenberg–Steenrod Axioms 2.2 Mayer-Vietoris Sequences 3 Voir également 4 Références 5 Bibliography Theorem Statement If {displaystyle Usubseteq Asubseteq X} are as above, nous disons que {style d'affichage U} can be excised if the inclusion map of the pair {style d'affichage (Xsetminus U,Asetminus U)} dans {style d'affichage (X,UN)} induces an isomorphism on the relative homologies: {style d'affichage H_{n}(Xsetminus U,Asetminus U)cong H_{n}(X,UN)} The theorem states that if the closure of {style d'affichage U} is contained in the interior of {style d'affichage A} , alors {style d'affichage U} can be excised.

Souvent, subspaces that do not satisfy this containment criterion still can be excised—it suffices to be able to find a deformation retract of the subspaces onto subspaces that do satisfy it.

Proof Sketch The proof of the excision theorem is quite intuitive, though the details are rather involved. The idea is to subdivide the simplices in a relative cycle in {style d'affichage (X,UN)} to get another chain consisting of "plus petit" Facile, and continuing the process until each simplex in the chain lies entirely in the interior of {style d'affichage A} or the interior of {displaystyle Xsetminus U} . Since these form an open cover for {style d'affichage X} and simplices are compact, we can eventually do this in a finite number of steps. This process leaves the original homology class of the chain unchanged (this says the subdivision operator is chain homotopic to the identity map on homology). In the relative homology {style d'affichage H_{n}(X,UN)} , alors, this says all the terms contained entirely in the interior of {style d'affichage U} can be dropped without affecting the homology class of the cycle. This allows us to show that the inclusion map is an isomorphism, as each relative cycle is equivalent to one that avoids {style d'affichage U} entirely.

Applications Eilenberg–Steenrod Axioms The excision theorem is taken to be one of the Eilenberg–Steenrod Axioms.

Mayer-Vietoris Sequences The Mayer–Vietoris sequence may be derived with a combination of excision theorem and the long-exact sequence.[1] See also Homotopy excision theorem References ^ See Hatcher 2002, p.149, for example Bibliography Joseph J. Rotman, Une introduction à la topologie algébrique, Springer Verlag, ISBN 0-387-96678-1 Allen Hatcher, Algebraic Topology. la presse de l'Universite de Cambridge, Cambridge, 2002. Catégories: Homology theoryTheorems in topology

Si vous voulez connaître d'autres articles similaires à Excision theorem vous pouvez visiter la catégorie Homology theory.

Monter

Nous utilisons nos propres cookies et ceux de tiers pour améliorer l'expérience utilisateur Plus d'informations