Théorème d'Euler

Euler's theorem This article is about Euler's theorem in number theory. Pour d'autres usages, see List of things named after Leonhard Euler § Theorems.

In number theory, Théorème d'Euler (also known as the Fermat–Euler theorem or Euler's totient theorem) stipule que, if n and a are coprime positive integers, et {style d'affichage varphi (n)} is Euler's totient function, then a raised to the power {style d'affichage varphi (n)} est conforme à 1 modulo n; C'est {style d'affichage a^{varphi (n)}équiv 1{pmod {n}}.} Dans 1736, Leonhard Euler published a proof of Fermat's little theorem[1] (stated by Fermat without proof), which is the restriction of Euler's theorem to the case where n is a prime number. Ensuite, Euler presented other proofs of the theorem, culminating with his paper of 1763, in which he proved a generalization to the case where n is not prime.[2] The converse of Euler's theorem is also true: if the above congruence is true, alors {style d'affichage a} et {displaystyle n} must be coprime.

The theorem is further generalized by Carmichael's theorem.

The theorem may be used to easily reduce large powers modulo {displaystyle n} . Par exemple, consider finding the ones place decimal digit of {displaystyle 7^{222}} , c'est à dire. {displaystyle 7^{222}{pmod {10}}} . The integers 7 et 10 are coprime, et {style d'affichage varphi (10)=4} . So Euler's theorem yields {displaystyle 7^{4}équiv 1{pmod {10}}} , and we get {displaystyle 7^{222}equiv 7^{4fois 55+2}équiv (7^{4})^{55}times 7^{2}equiv 1^{55}times 7^{2}equiv 49equiv 9{pmod {10}}} .

En général, when reducing a power of {style d'affichage a} modulo {displaystyle n} (où {style d'affichage a} et {displaystyle n} are coprime), one needs to work modulo {style d'affichage varphi (n)} in the exponent of {style d'affichage a} : si {displaystyle xequiv y{pmod {varphi (n)}}} , alors {style d'affichage a^{X}equiv a^{y}{pmod {n}}} .

Euler's theorem underlies the RSA cryptosystem, which is widely used in Internet communications. In this cryptosystem, Euler's theorem is used with n being a product of two large prime numbers, and the security of the system is based on the difficulty of factoring such an integer.

Contenu 1 Preuves 2 Voir également 3 Remarques 4 Références 5 External links Proofs 1. Euler's theorem can be proven using concepts from the theory of groups:[3] The residue classes modulo n that are coprime to n form a group under multiplication (see the article Multiplicative group of integers modulo n for details). The order of that group is φ(n). Lagrange's theorem states that the order of any subgroup of a finite group divides the order of the entire group, in this case φ(n). If a is any number coprime to n then a is in one of these residue classes, and its powers a, a2, ... , ak modulo n form a subgroup of the group of residue classes, with ak ≡ 1 (mod n). Lagrange's theorem says k must divide φ(n), c'est à dire. there is an integer M such that kM = φ(n). This then implies, {style d'affichage a^{varphi (n)}=un^{kM}=(un ^{k})^{M}equiv 1^{M}=1equiv 1{pmod {n}}.} 2. There is also a direct proof:[4][5] Let R = {x1, x2, ... , (n)} be a reduced residue system (mod n) and let a be any integer coprime to n. The proof hinges on the fundamental fact that multiplication by a permutes the xi: in other words if axj ≡ axk (mod n) then j = k. (This law of cancellation is proved in the article Multiplicative group of integers modulo n.[6]) C'est-à-dire, the sets R and aR = {ax1, ax2, ... , axφ(n)}, considered as sets of congruence classes (mod n), are identical (as sets—they may be listed in different orders), so the product of all the numbers in R is congruent (mod n) to the product of all the numbers in aR: {displaystyle prod _{je=1}^{varphi (n)}X_{je}equiv prod _{je=1}^{varphi (n)}ax_{je}=un^{varphi (n)}produit _{je=1}^{varphi (n)}X_{je}{pmod {n}},} and using the cancellation law to cancel each xi gives Euler's theorem: {style d'affichage a^{varphi (n)}équiv 1{pmod {n}}.} See also Carmichael function Euler's criterion Fermat's little theorem Wilson's theorem Notes ^ See: Léonhard Euler (presented: Août 2, 1736; publié: 1741) "Theorematum quorundam ad numeros primos spectantium demonstratio" (A proof of certain theorems regarding prime numbers), Commentarii academiae scientiarum Petropolitanae, 8 : 141–146. For further details on this paper, including an English translation, voir: The Euler Archive. ^ See: L. Euler (publié: 1763) "Theoremata arithmetica nova methodo demonstrata" (Proof of a new method in the theory of arithmetic), Novi Commentarii academiae scientiarum Petropolitanae, 8 : 74–104. Euler's theorem appears as "Théorème 11" sur la page 102. This paper was first presented to the Berlin Academy on June 8, 1758 and to the St. Académie de Saint-Pétersbourg en octobre 15, 1759. In this paper, Euler's totient function, {style d'affichage varphi (n)} , is not named but referred to as "numerus partium ad N primarum" (the number of parts prime to N; C'est, the number of natural numbers that are smaller than N and relatively prime to N). For further details on this paper, voir: The Euler Archive. For a review of Euler's work over the years leading to Euler's theorem, voir: Ed Sandifer (2005) "Euler's proof of Fermat's little theorem" Archivé 2006-08-28 at the Wayback Machine ^ Ireland & Rosen, corr. 1 to prop 3.3.2 ^ Hardy & Wright, thm. 72 ^ Landau, thm. 75 ^ See Bézout's lemma References The Disquisitiones Arithmeticae has been translated from Gauss's Ciceronian Latin into English and German. The German edition includes all of his papers on number theory: all the proofs of quadratic reciprocity, the determination of the sign of the Gauss sum, the investigations into biquadratic reciprocity, and unpublished notes.

Gauss, Carl Friedrich; Clarke, Arthur A. (translated into English) (1986), Disquisitiones Arithemeticae (Deuxième, corrected edition), New York: Springer, ISBN 0-387-96254-9 Gauss, Carl Friedrich; Maser, H. (translated into German) (1965), Untersuchungen uber hohere Arithmetik (Disquisitiones Arithemeticae & other papers on number theory) (Second edition), New York: Chelsea, ISBN 0-8284-0191-8 Hardy, g. H; Wright, E. M. (1980), An Introduction to the Theory of Numbers (Fifth edition), Oxford: Presse universitaire d'Oxford, ISBN 978-0-19-853171-5 Ireland, Kenneth; Rosen, Michael (1990), A Classical Introduction to Modern Number Theory (Second edition), New York: Springer, ISBN 0-387-97329-X Landau, Edmund (1966), Elementary Number Theory, New York: Chelsea External links Weisstein, Eric W. "Euler's Totient Theorem". MathWorld. Euler-Fermat Theorem at PlanetMath hide vte Leonhard Euler Euler–Lagrange equationEuler–Lotka equationEuler–Maclaurin formulaEuler–Maruyama methodEuler–Mascheroni constantEuler–Poisson–Darboux equationEuler–Rodrigues formulaEuler–Tricomi equationEuler's continued fraction formulaEuler's critical loadEuler's formulaEuler's four-square identityEuler's identityEuler's pump and turbine equationEuler's rotation theoremEuler's sum of powers conjectureEuler's theoremEuler equations (dynamique des fluides)Fonction d'EulerMéthode d'EulerNombre d'EulerNombre d'Euler (la physique)Euler–Bernoulli beam theoryNamesakes Category Portal: Mathematics Categories: Modular arithmeticTheorems in number theoryLeonhard Euler

Si vous voulez connaître d'autres articles similaires à Théorème d'Euler vous pouvez visiter la catégorie Léonhard Euler.

Laisser un commentaire

Votre adresse email ne sera pas publiée.


Nous utilisons nos propres cookies et ceux de tiers pour améliorer l'expérience utilisateur Plus d'informations