# Euler's theorem in geometry Euler's theorem in geometry Euler's theorem: {displaystyle d=|IO|={sqrt {R(R-2r)}}} En géométrie, Euler's theorem states that the distance d between the circumcenter and incenter of a triangle is given by {displaystyle d^{2}=R(R-2r)} ou équivalent {style d'affichage {frac {1}{R-d}}+{frac {1}{R+d}}={frac {1}{r}},} où {style d'affichage R} et {style d'affichage r} denote the circumradius and inradius respectively (the radii of the circumscribed circle and inscribed circle respectively). The theorem is named for Leonhard Euler, qui l'a publié dans 1765. Cependant, the same result was published earlier by William Chapple in 1746. From the theorem follows the Euler inequality: {displaystyle Rgeq 2r,} which holds with equality only in the equilateral case. Contenu 1 Stronger version of the inequality 2 Euler's theorem for the escribed circle 3 Euler's inequality in absolute geometry 4 Voir également 5 Références 6 External links Stronger version of the inequality A stronger version est {style d'affichage {frac {R}{r}}gq {frac {abc+a^{3}+b^{3}+c^{3}}{2abc}}gq {frac {un}{b}}+{frac {b}{c}}+{frac {c}{un}}-1gq {frac {2}{3}}la gauche({frac {un}{b}}+{frac {b}{c}}+{frac {c}{un}}droit)gq 2,} où {style d'affichage a} , {style d'affichage b} , et {displaystyle c} are the side lengths of the triangle.

Euler's theorem for the escribed circle If {style d'affichage r_{un}} et {displaystyle d_{un}} denote respectively the radius of the escribed circle opposite to the vertex {style d'affichage A} and the distance between its center and the center of the circumscribed circle, alors {displaystyle d_{un}^{2}=R(R+2r_{un})} .

Euler's inequality in absolute geometry Euler's inequality, in the form stating that, for all triangles inscribed in a given circle, the maximum of the radius of the inscribed circle is reached for the equilateral triangle and only for it, is valid in absolute geometry. See also Fuss' theorem for the relation among the same three variables in bicentric quadrilaterals Poncelet's closure theorem, showing that there is an infinity of triangles with the same two circles (and therefore the same R, r, et d) List of triangle inequalities References ^ Johnson, Roger A.. (2007) , Géométrie euclidienne avancée, Dover Publ., p. 186 ^ Dunham, William (2007), The Genius of Euler: Reflections on his Life and Work, Spectrum Series, volume. 2, Mathematical Association of America, p. 300, ISBN 9780883855584 ^ Leversha, Gerry; Forgeron, g. C. (Novembre 2007), "Géométrie d'Euler et du triangle", La gazette mathématique, 91 (522): 436–452, est ce que je:10.1017/S0025557200182087, JSTOR 40378417, S2CID 125341434 ^ Chapple, William (1746), "An essay on the properties of triangles inscribed in and circumscribed about two given circles", Miscellanea Curiosa Mathematica, 4: 117–124. The formula for the distance is near the bottom of p.123. ^ Alsina, Claudi; Nelsen, Roger (2009), When Less is More: Visualizing Basic Inequalities, Dolciani Mathematical Expositions, volume. 36, Mathematical Association of America, p. 56, ISBN 9780883853429 ^ Sauter à: a b Svrtan, Dragutin; Veljan, Darko (2012), "Non-Euclidean versions of some classical triangle inequalities", Forum Géométrique, 12: 197–209; see p. 198 ^ Pambuccian, Victor; Schacht, Celia (2018), "Euler's inequality in absolute geometry", Journal of Geometry, 109 (Art. 8): 1–11, est ce que je:10.1007/s00022-018-0414-6, S2CID 125459983 External links Wikimedia Commons has media related to Euler's theorem in geometry. Weisstein, Éric W., "Euler Triangle Formula", MathWorld Categories: Triangle inequalitiesTheorems about triangles and circles

Si vous voulez connaître d'autres articles similaires à Euler's theorem in geometry vous pouvez visiter la catégorie Theorems about triangles and circles.

Monter

Nous utilisons nos propres cookies et ceux de tiers pour améliorer l'expérience utilisateur Plus d'informations