Euler's theorem in geometry

Euler's theorem in geometry Euler's theorem: {displaystyle d=|IO|={quadrat {R(R-2r)}}} In der Geometrie, Euler's theorem states that the distance d between the circumcenter and incenter of a triangle is given by[1][2] {Anzeigestil d^{2}=R(R-2r)} oder gleichwertig {Anzeigestil {frac {1}{R-d}}+{frac {1}{R+d}}={frac {1}{r}},} wo {Anzeigestil R} und {Anzeigestil r} denote the circumradius and inradius respectively (the radii of the circumscribed circle and inscribed circle respectively). The theorem is named for Leonhard Euler, wer es veröffentlicht hat 1765.[3] Jedoch, the same result was published earlier by William Chapple in 1746.[4] From the theorem follows the Euler inequality:[5] {displaystyle Rgeq 2r,} which holds with equality only in the equilateral case.[6] Inhalt 1 Stronger version of the inequality 2 Euler's theorem for the escribed circle 3 Euler's inequality in absolute geometry 4 Siehe auch 5 Verweise 6 External links Stronger version of the inequality A stronger version[6] ist {Anzeigestil {frac {R}{r}}geq {frac {abc+a^{3}+b^{3}+c^{3}}{2abc}}geq {frac {a}{b}}+{frac {b}{c}}+{frac {c}{a}}-1geq {frac {2}{3}}links({frac {a}{b}}+{frac {b}{c}}+{frac {c}{a}}Rechts)geq 2,} wo {Anzeigestil a} , {Anzeigestil b} , und {Anzeigestil c} are the side lengths of the triangle.
Euler's theorem for the escribed circle If {Anzeigestil r_{a}} und {Anzeigestil d_{a}} denote respectively the radius of the escribed circle opposite to the vertex {Anzeigestil A} and the distance between its center and the center of the circumscribed circle, dann {Anzeigestil d_{a}^{2}=R(R+2r_{a})} .
Euler's inequality in absolute geometry Euler's inequality, in the form stating that, for all triangles inscribed in a given circle, the maximum of the radius of the inscribed circle is reached for the equilateral triangle and only for it, is valid in absolute geometry.[7] See also Fuss' theorem for the relation among the same three variables in bicentric quadrilaterals Poncelet's closure theorem, showing that there is an infinity of triangles with the same two circles (and therefore the same R, r, und d) List of triangle inequalities References ^ Johnson, Roger A. (2007) [1929], Fortgeschrittene euklidische Geometrie, Dover Publ., p. 186 ^ Dunham, Wilhelm (2007), The Genius of Euler: Reflections on his Life and Work, Spectrum Series, vol. 2, Mathematical Association of America, p. 300, ISBN 9780883855584 ^ Leversha, Gerry; Schmied, G. C. (November 2007), "Euler- und Dreiecksgeometrie", Die Mathematische Zeitung, 91 (522): 436–452, doi:10.1017/S0025557200182087, JSTOR 40378417, S2CID 125341434 ^ Chapple, Wilhelm (1746), "An essay on the properties of triangles inscribed in and circumscribed about two given circles", Miscellanea Curiosa Mathematica, 4: 117–124. The formula for the distance is near the bottom of p.123. ^ Alsina, Claudi; Nelsen, Roger (2009), When Less is More: Visualizing Basic Inequalities, Dolciani Mathematical Expositions, vol. 36, Mathematical Association of America, p. 56, ISBN 9780883853429 ^ Nach oben springen: a b Svrtan, Dragutin; Veljan, Darko (2012), "Non-Euclidean versions of some classical triangle inequalities", Geometrisches Forum, 12: 197–209; see p. 198 ^ Pambuccian, Sieger; Schacht, Celia (2018), "Euler's inequality in absolute geometry", Journal of Geometry, 109 (Art. 8): 1–11, doi:10.1007/s00022-018-0414-6, S2CID 125459983 External links Wikimedia Commons has media related to Euler's theorem in geometry. Weißstein, Erich W., "Euler Triangle Formula", MathWorld Categories: Triangle inequalitiesTheorems about triangles and circles
Wenn Sie andere ähnliche Artikel wissen möchten Euler's theorem in geometry Sie können die Kategorie besuchen Theorems about triangles and circles.
Hinterlasse eine Antwort