# Teorema de Erdős–Stone

Erdős–Stone theorem In extremal graph theory, the Erdős–Stone theorem is an asymptotic result generalising Turán's theorem to bound the number of edges in an H-free graph for a non-complete graph H. It is named after Paul Erdős and Arthur Stone, quem provou isso em 1946,[1] and it has been described as the “fundamental theorem of extremal graph theory”.[2] Conteúdo 1 Statement for Turán graphs 2 Statement for arbitrary non-bipartite graphs 3 Turán density 4 Prova 5 Quantitative results 6 Notes Statement for Turán graphs The extremal number ex(n; H) is defined to be the maximum number of edges in a graph with n vertices not containing a subgraph isomorphic to H; see the Forbidden subgraph problem for more examples of problems involving the extremal number. Turán's theorem says that ex(n; Kr) = tr − 1(n), the number of edges of the Turán graph T(n, r − 1), and that the Turán graph is the unique such extremal graph. The Erdős–Stone theorem extends this result to H=Kr(t), the complete r-partite graph with t vertices in each class, which is the graph obtained by taking Kr and replacing each vertex with t independent vertices: {estilo de exibição {mbox{ex}}(n;K_{r}(t))= esquerda({fratura {r-2}{r-1}}+o(1)certo){n escolher 2}.} Statement for arbitrary non-bipartite graphs If H is an arbitrary graph whose chromatic number is r > 2, then H is contained in Kr(t) whenever t is at least as large as the largest color class in an r-coloring of H, but it is not contained in the Turán graph T(n,r − 1), as this graph and therefore each of its subgraphs can be colored with r − 1 colors. It follows that the extremal number for H is at least as large as the number of edges in T(n,r − 1), and at most equal to the extremal function for Kr(t); isso é, {estilo de exibição {mbox{ex}}(n;H)= esquerda({fratura {r-2}{r-1}}+o(1)certo){n escolher 2}.} For bipartite graphs H, Contudo, the theorem does not give a tight bound on the extremal function. It is known that, when H is bipartite, ex(n; H) = o(n2), and for general bipartite graphs little more is known. See Zarankiewicz problem for more on the extremal functions of bipartite graphs.

Turán density Another way of describing the Erdős–Stone theorem is using the Turán density of a graph {estilo de exibição H} , which is defined by {estilo de exibição pi (H)=lim_{até o infinito }{fratura {{texto{ex}}(n;H)}{n escolher 2}}} . This determines the extremal number {estilo de exibição {texto{ex(n; H)}}} up to an additive {estilo de exibição o(n^{2})} error term. It can also be thought of as follows: given a sequence of graphs {estilo de exibição G_{1},G_{2},pontos } , each not containing {estilo de exibição H} , such that the number of vertices goes to infinity, the Turán density is the maximum possible limit of their edge densities. The Erdős–Stone theorem determines the Turán density for all graphs, showing that any graph {estilo de exibição H} with chromatic number {displaystyle r>1} has a Turán density of {estilo de exibição pi (H)={fratura {r-2}{r-1}}.} Proof One proof of the Erdős–Stone theorem uses an extension of the Kővári–Sós–Turán theorem to hypergraphs, as well as the supersaturation theorem, by creating a corresponding hypergraph for every graph that is {estilo de exibição K_{r}(t)} -free and showing that the hypergraph has some bounded number of edges. The Kővári–Sós–Turán says, among other things, that the extremal number of {estilo de exibição K_{2}(t)} , the complete bipartite graph with {estilo de exibição t} vertices in each part, é no máximo {estilo de exibição {texto{ex}}(K_{2}(t);n)leq Cn^{2-1/t}} for a constant {estilo de exibição C} . This can be extended to hypergraphs: definindo {estilo de exibição K_{s,pontos ,s}^{(r)}} to be the {estilo de exibição r} -partite {estilo de exibição r} -graph with {estilo de exibição s} vertices in each part, então {estilo de exibição {texto{ex}}(K_{s,pontos ,s}^{(r)},n)leq Cn^{r-s^{1-r}}} para alguma constante {estilo de exibição C} .[citação necessária] Agora, for a given graph {displaystyle H=K_{r}(t)} com {displaystyle r>1,sgeq 1} , and some graph {estilo de exibição G} com {estilo de exibição m} vertices that does not contain a subgraph isomorphic to {estilo de exibição H} , we define the {estilo de exibição r} -graph {estilo de exibição F} with the same vertices as {estilo de exibição G} and a hyperedge between vertices in {estilo de exibição F} if they form a clique in {estilo de exibição G} . Observe que se {estilo de exibição F} contains a copy of {estilo de exibição K_{s,pontos ,s}^{(r)}} , then the original graph {estilo de exibição G} contains a copy of {estilo de exibição H} , as every pair of vertices in distinct parts must have an edge, but no two vertices in the same part contain an edge. Desta forma. {estilo de exibição F} contains no copies of {estilo de exibição K_{s,pontos ,s}^{r}} , and so it has {estilo de exibição o(n^{r})} hyperedges, indicating that there are {estilo de exibição o(n^{r})} cópias de {estilo de exibição K_{r}} dentro {estilo de exibição G} . By supersaturation, this means that the edge density of {estilo de exibição G} is within {estilo de exibição o(1)} of the Turán density of {estilo de exibição K_{r}} , qual é {estilo de exibição {fratura {r-2}{r-1}}} by Turán's theorem; portanto, the edge density is bounded above by {estilo de exibição {fratura {r-2}{r-1}}+o(1)} .

Por outro lado, we can achieve this bound by taking the Turán graph {estilo de exibição T(n,r-1)} , which contains no copies of {estilo de exibição K_{r}(t)} but has {estilo de exibição à esquerda({fratura {r-2}{r-1}}-o(1)certo){n escolher 2}} arestas, showing that this value is the maximum and concluding the proof.

Quantitative results Several versions of the theorem have been proved that more precisely characterise the relation of n, r, t and the o(1) term. Define the notation[3] sr,e(n) (por 0 < ε < 1/(2(r − 1))) to be the greatest t such that every graph of order n and size {displaystyle left({frac {r-2}{2(r-1)}}+varepsilon right)n^{2}} contains a Kr(t). Erdős and Stone proved that {displaystyle s_{r,varepsilon }(n)geq left(underbrace {log cdots log } _{r-1}nright)^{1/2}} for n sufficiently large. The correct order of sr,ε(n) in terms of n was found by Bollobás and Erdős:[4] for any given r and ε there are constants c1(r, ε) and c2(r, ε) such that c1(r, ε) log n < sr,ε(n) < c2(r, ε) log n. Chvátal and Szemerédi[5] then determined the nature of the dependence on r and ε, up to a constant: {displaystyle {frac {1}{500log(1/varepsilon )}}log ng n} for sufficiently large n. Notes ^ Erdős, P.; Pedra, UMA. H. (1946). "On the structure of linear graphs". Boletim da American Mathematical Society. 52 (12): 1087–1091. doi:10.1090/S0002-9904-1946-08715-7. ^ Bollobás, Béla (1998). Modern Graph Theory. Nova york: Springer-Verlag. pp. 120. ISBN 0-387-98491-7. ^ Bollobás, Béla (1995). "teoria dos grafos extremos". In R. eu. Graham; M. Grötschel; eu. Noivo (ed.). Handbook of combinatorics. Elsevier. p. 1244. ISBN 0-444-88002-X. ^ Bollobás, B.; Floresta, P. (1973). "On the structure of edge graphs". Boletim da Sociedade Matemática de Londres. 5 (3): 317–321. doi:10.1112/blms/5.3.317. ^ Ele atirou, V.; Ela pertence a você, E. (1981). "On the Erdős-Stone theorem". Jornal da Sociedade Matemática de Londres. 23 (2): 207–214. doi:10.1112/jlms/s2-23.2.207. Categorias: Extremal graph theoryTheorems in graph theoryPaul Erdős

Se você quiser conhecer outros artigos semelhantes a Teorema de Erdős–Stone você pode visitar a categoria teoria dos grafos extremos.

Ir para cima

Usamos cookies próprios e de terceiros para melhorar a experiência do usuário Mais informação