Erdős–Rado theorem

Erdős–Rado theorem In partition calculus, part of combinatorial set theory, une branche des mathématiques, the Erdős–Rado theorem is a basic result extending Ramsey's theorem to uncountable sets. It is named after Paul Erdős and Richard Rado. It is sometimes also attributed to Đuro Kurepa who proved it under the additional assumption of the generalised continuum hypothesis,[1] and hence the result is sometimes also referred to as the Erdős–Rado–Kurepa theorem.

Statement of the theorem If r ≥ 0 is finite and κ is an infinite cardinal, alors {displaystyle exp _{r}(kappa )^{+}longrightarrow (kappa ^{+})_{kappa }^{r+1}} where exp0(κ) = κ and inductively expr+1(κ)=2expr(κ). This is sharp in the sense that expr(κ)+ cannot be replaced by expr(κ) on the left hand side.

The above partition symbol describes the following statement. If f is a coloring of the r+1-element subsets of a set of cardinality expr(κ)+, in κ many colors, then there is a homogeneous set of cardinality κ+ (a set, all whose r+1-element subsets get the same f-value).

Notes ^ References Erdős, Paul; Hajnal, András; Máté, Attila; Rado, Richard (1984), Combinatorial set theory: partition relations for cardinals, Studies in Logic and the Foundations of Mathematics, volume. 106, Amsterdam: Société d'édition de la Hollande du Nord., ISBN 0-444-86157-2, M 0795592 Forêt, P; Rado, R. (1956), "A partition calculus in set theory.", Taureau. Amer. Math. Soc., 62 (5): 427–489, est ce que je:10.1090/S0002-9904-1956-10036-0, M 0081864 Catégories: Set theoryTheorems in combinatoricsPaul Erdős

Si vous voulez connaître d'autres articles similaires à Erdős–Rado theorem vous pouvez visiter la catégorie Paul Erdős.

Laisser un commentaire

Votre adresse email ne sera pas publiée.


Nous utilisons nos propres cookies et ceux de tiers pour améliorer l'expérience utilisateur Plus d'informations