Equidistribution theorem

Equidistribution theorem Illustration of filling the unit interval (horizontal axis) with the first n terms using the equidistribution theorem with four common irrational numbers, for n from 0 à 999 (vertical axis). La 113 distinct bands for π are due to the closeness of its value to the rational number 355/113. De la même manière, la 7 distinct groups are due to π being approximately 22/7. (click for detailed view) En mathématiques, the equidistribution theorem is the statement that the sequence a, 2un, 3un, ... mode 1 is uniformly distributed on the circle {style d'affichage mathbb {R} /mathbb {Z} } , when a is an irrational number. It is a special case of the ergodic theorem where one takes the normalized angle measure {displaystyle mu ={frac {thêta }{2pi }}} .

Contenu 1 Histoire 2 Voir également 3 Références 3.1 Références historiques 3.2 Modern references History While this theorem was proved in 1909 et 1910 separately by Hermann Weyl, Wacław Sierpiński and Piers Bohl, variants of this theorem continue to be studied to this day.

Dans 1916, Weyl proved that the sequence a, 22un, 32un, ... mode 1 is uniformly distributed on the unit interval. Dans 1937, Ivan Vinogradov proved that the sequence pn a mod 1 is uniformly distributed, where pn is the nth prime. Vinogradov's proof was a byproduct of the odd Goldbach conjecture, that every sufficiently large odd number is the sum of three primes.

George Birkhoff, dans 1931, and Aleksandr Khinchin, dans 1933, proved that the generalization x + na, for almost all x, is equidistributed on any Lebesgue measurable subset of the unit interval. The corresponding generalizations for the Weyl and Vinogradov results were proven by Jean Bourgain in 1988.

Spécifiquement, Khinchin showed that the identity {style d'affichage lim _{pas trop }{frac {1}{n}}somme _{k=1}^{n}F((x+ka){dans un sens {1}})=int _{0}^{1}F(y),mourir} holds for almost all x and any Lebesgue integrable function ƒ. In modern formulations, it is asked under what conditions the identity {style d'affichage lim _{pas trop }{frac {1}{n}}somme _{k=1}^{n}F((x+b_{k}un){dans un sens {1}})=int _{0}^{1}F(y),mourir} might hold, given some general sequence bk.

One noteworthy result is that the sequence 2ka mod 1 is uniformly distributed for almost all, but not all, irrational a. De la même manière, for the sequence bk = 2ka, for every irrational a, and almost all x, there exists a function ƒ for which the sum diverges. In this sense, this sequence is considered to be a universally bad averaging sequence, as opposed to bk = k, which is termed a universally good averaging sequence, because it does not have the latter shortcoming.

A powerful general result is Weyl's criterion, which shows that equidistribution is equivalent to having a non-trivial estimate for the exponential sums formed with the sequence as exponents. For the case of multiples of a, Weyl's criterion reduces the problem to summing finite geometric series.

See also Diophantine approximation Low-discrepancy sequence Dirichlet's approximation theorem Three-gap theorem References Historical references P. Bohl, (1909) Über ein in der Theorie der säkutaren Störungen vorkommendes Problem, J. reine angew. Math. 135, pp. 189–283. Weyl, H. (1910). "Über die Gibbs'sche Erscheinung und verwandte Konvergenzphänomene". Rendiconti del Circolo Matematico di Palermo. 330: 377–407. est ce que je:10.1007/bf03014883. S2CID 122545523. O. Sierpinski, (1910) Sur la valeur asymptotique d'une certaine somme, Bull Intl. Acad. Polonaise des Sci. et des Lettres (Cracovie) series A, pp. 9–11. Weyl, H. (1916). "Ueber die Gleichverteilung von Zahlen mod. Eins". Math. Anne. 77 (3): 313–352. est ce que je:10.1007/BF01475864. S2CID 123470919. Birkhoff, g. ré. (1931). "Proof of the ergodic theorem". Proc. Natl. Acad. SCI. U.S.A. 17 (12): 656–660. est ce que je:10.1073/pnas.17.12.656. PMC 1076138. PMID 16577406. Ya. Khinchin, UN. (1933). "Zur Birkhoff's Lösung des Ergodensproblems". Math. Anne. 107: 485–488. est ce que je:10.1007/BF01448905. S2CID 122289068. Modern references Joseph M. Rosenblatt and Máté Weirdl, Pointwise ergodic theorems via harmonic analysis, (1993) appearing in Ergodic Theory and its Connections with Harmonic Analysis, Proceedings of the 1993 Alexandria Conference, (1995) Karl E. Petersen and Ibrahim A. Salama, éd., la presse de l'Universite de Cambridge, Cambridge, ISBN 0-521-45999-0. (An extensive survey of the ergodic properties of generalizations of the equidistribution theorem of shift maps on the unit interval. Focuses on methods developed by Bourgain.) Elias M. Stein and Rami Shakarchi, Fourier Analysis. Une introduction, (2003) Presse de l'Université de Princeton, pp 105–113 (Proof of the Weyl's theorem based on Fourier Analysis) Catégories: Ergodic theoryDiophantine approximationTheorems in number theory

Si vous voulez connaître d'autres articles similaires à Equidistribution theorem vous pouvez visiter la catégorie Diophantine approximation.

Laisser un commentaire

Votre adresse email ne sera pas publiée.

Monter

Nous utilisons nos propres cookies et ceux de tiers pour améliorer l'expérience utilisateur Plus d'informations