Eilenberg–Zilber theorem

Eilenberg–Zilber theorem In mathematics, specifically in algebraic topology, the Eilenberg–Zilber theorem is an important result in establishing the link between the homology groups of a product space {estilo de exibição Xtimes Y} and those of the spaces {estilo de exibição X} e {estilo de exibição Y} . The theorem first appeared in a 1953 paper in the American Journal of Mathematics by Samuel Eilenberg and Joseph A. Zilber. One possible route to a proof is the acyclic model theorem.

Conteúdo 1 Declaração do teorema 2 Statement in terms of composite maps 3 The coproduct 4 Statement in cohomology 5 Generalizações 6 Consequências 7 Veja também 8 References Statement of the theorem The theorem can be formulated as follows. Suponha {estilo de exibição X} e {estilo de exibição Y} are topological spaces, Then we have the three chain complexes {estilo de exibição C_{*}(X)} , {estilo de exibição C_{*}(S)} , e {estilo de exibição C_{*}(X vezes Y)} . (The argument applies equally to the simplicial or singular chain complexes.) We also have the tensor product complex {estilo de exibição C_{*}(X)otimes C_{*}(S)} , whose differential is, por definição, {estilo de exibição parcial _{C_{*}(X)otimes C_{*}(S)}(sigma otimes tau )=partial _{X}sigma otimes tau +(-1)^{p}sigma otimes partial _{S}sim } por {displaystyle sigma in C_{p}(X)} e {estilo de exibição parcial _{X}} , {estilo de exibição parcial _{S}} the differentials on {estilo de exibição C_{*}(X)} , {estilo de exibição C_{*}(S)} .

Then the theorem says that we have chain maps {displaystyle Fcolon C_{*}(X vezes Y)rightarrow C_{*}(X)otimes C_{*}(S),quad Gcolon C_{*}(X)otimes C_{*}(S)rightarrow C_{*}(X vezes Y)} de tal modo que {estilo de exibição FG} is the identity and {displaystyle GF} is chain-homotopic to the identity. Além disso, the maps are natural in {estilo de exibição X} e {estilo de exibição Y} . Consequently the two complexes must have the same homology: {estilo de exibição H_{*}(C_{*}(X vezes Y))cong H_{*}(C_{*}(X)otimes C_{*}(S)).} Statement in terms of composite maps The original theorem was proven in terms of acyclic models but more mileage was gotten in a phrasing by Eilenberg and Mac Lane using explicit maps. The standard map {estilo de exibição F} they produce is traditionally referred to as the Alexander–Whitney map and {estilo de exibição G} the Eilenberg–Zilber map. The maps are natural in both {estilo de exibição X} e {estilo de exibição Y} and inverse up to homotopy: um tem {displaystyle FG=mathrm {Eu iria} _{C_{*}(X)otimes C_{*}(S)},qquad GF-mathrm {Eu iria} _{C_{*}(X vezes Y)}=partial _{C_{*}(X)otimes C_{*}(S)}H+Hpartial _{C_{*}(X)otimes C_{*}(S)}} for a homotopy {estilo de exibição H} natural in both {estilo de exibição X} e {estilo de exibição Y} such that further, each of {displaystyle HH} , {displaystyle FH} , e {displaystyle HG} é zero. This is what would come to be known as a contraction or a homotopy retract datum.

The coproduct The diagonal map {displaystyle Delta colon Xto Xtimes X} induces a map of cochain complexes {estilo de exibição C_{*}(X)to C_{*}(Xtimes X)} que, followed by the Alexander–Whitney {estilo de exibição F} yields a coproduct {estilo de exibição C_{*}(X)to C_{*}(X)otimes C_{*}(X)} inducing the standard coproduct on {estilo de exibição H_{*}(X)} . With respect to these coproducts on {estilo de exibição X} e {estilo de exibição Y} , the map {estilo de exibição H_{*}(X)otimes H_{*}(S)to H_{*}{grande (}C_{*}(X)otimes C_{*}(S){grande )} {overset {sim }{para }} H_{*}(X vezes Y)} , also called the Eilenberg–Zilber map, becomes a map of differential graded coalgebras. The composite {estilo de exibição C_{*}(X)to C_{*}(X)otimes C_{*}(X)} itself is not a map of coalgebras.

Statement in cohomology The Alexander–Whitney and Eilenberg–Zilber maps dualize (over any choice of commutative coefficient ring {estilo de exibição k} with unity) to a pair of maps {estilo de exibição G^{*}colon C^{*}(X vezes Y)rightarrow {grande (}C_{*}(X)otimes C_{*}(S){grande )}^{*},quad F^{*}colon {grande (}C_{*}(X)otimes C_{*}(S){grande )}^{*}rightarrow C^{*}(X vezes Y)} which are also homotopy equivalences, as witnessed by the duals of the preceding equations, using the dual homotopy {estilo de exibição H^{*}} . The coproduct does not dualize straightforwardly, because dualization does not distribute over tensor products of infinitely-generated modules, but there is a natural injection of differential graded algebras {displaystyle icolon C^{*}(X)às vezes C^{*}(S)para {grande (}C_{*}(X)otimes C_{*}(S){grande )}^{*}} dado por {displaystyle alpha otimes beta mapsto (sigma otimes tau mapsto alpha (sigma )beta (sim ))} , the product being taken in the coefficient ring {estilo de exibição k} . This {estilo de exibição eu} induces an isomorphism in cohomology, so one does have the zig-zag of differential graded algebra maps {estilo de exibição C^{*}(X)às vezes C^{*}(X) {overset {eu}{para }} {grande (}C_{*}(X)otimes C_{*}(X){grande )}^{*} {overset {G^{*}}{leftarrow }} C^{*}(Xtimes X){overset {C^{*}(Delta )}{para }}C^{*}(X)} inducing a product {displaystyle smile colon H^{*}(X)otimes H^{*}(X)to H^{*}(X)} in cohomology, known as the cup product, Porque {estilo de exibição H^{*}(eu)} e {estilo de exibição H^{*}(G)} are isomorphisms. Substituindo {estilo de exibição G^{*}} com {displaystyle F^{*}} so the maps all go the same way, one gets the standard cup product on cochains, given explicitly by {displaystyle alpha otimes beta mapsto {Grande (}sigma mapsto (alpha otimes beta )(F^{*}Delta ^{*}sigma )=soma _{p=0}^{dim sigma }alfa (sigma |_{Delta ^{[0,p]}})cdot beta (sigma |_{Delta ^{[p,dim sigma ]}}){Grande )}} , que, since cochain evaluation {estilo de exibição C^{p}(X)otimes C_{q}(X)to k} vanishes unless {estilo de exibição p=q} , reduces to the more familiar expression.

Note that if this direct map {estilo de exibição C^{*}(X)às vezes C^{*}(X)to C^{*}(X)} of cochain complexes were in fact a map of differential graded algebras, then the cup product would make {estilo de exibição C^{*}(X)} a commutative graded algebra, which it is not. This failure of the Alexander–Whitney map to be a coalgebra map is an example the unavailability of commutative cochain-level models for cohomology over fields of nonzero characteristic, and thus is in a way responsible for much of the subtlety and complication in stable homotopy theory.

Generalizations An important generalisation to the non-abelian case using crossed complexes is given in the paper by Andrew Tonks below. This give full details of a result on the (simplicial) classifying space of a crossed complex stated but not proved in the paper by Ronald Brown and Philip J. Higgins on classifying spaces.

Consequences The Eilenberg–Zilber theorem is a key ingredient in establishing the Künneth theorem, which expresses the homology groups {estilo de exibição H_{*}(X vezes Y)} em termos de {estilo de exibição H_{*}(X)} e {estilo de exibição H_{*}(S)} . In light of the Eilenberg–Zilber theorem, the content of the Künneth theorem consists in analysing how the homology of the tensor product complex relates to the homologies of the factors.

See also Acyclic model References Eilenberg, Samuel; Zilber, Joseph A. (1953), "On Products of Complexes", Revista Americana de Matemática, volume. 75, não. 1, pp. 200-204, doi:10.2307/2372629, JSTOR 2372629, MR 0052767. Hatcher, Allen (2002), Algebraic Topology, Cambridge University Press, ISBN 978-0-521-79540-1. Tonks, André (2003), "On the Eilenberg–Zilber theorem for crossed complexes", Jornal de Álgebra Pura e Aplicada, volume. 179, não. 1-2, pp. 199–230, doi:10.1016/S0022-4049(02)00160-3, MR 1958384. Marrom, Ronaldo; Higgins, Philip J. (1991), "The classifying space of a crossed complex", Anais de Matemática da Sociedade Filosófica de Cambridge, volume. 110, pp. 95-120, CiteSeerX, doi:10.1017/S0305004100070158. Categorias: Homological algebraTheorems in algebraic topology

Se você quiser conhecer outros artigos semelhantes a Eilenberg–Zilber theorem você pode visitar a categoria Homological algebra.

Deixe uma resposta

seu endereço de e-mail não será publicado.

Ir para cima

Usamos cookies próprios e de terceiros para melhorar a experiência do usuário Mais informação