# Eilenberg–Zilber theorem

Eilenberg–Zilber theorem In mathematics, specifically in algebraic topology, the Eilenberg–Zilber theorem is an important result in establishing the link between the homology groups of a product space {style d'affichage X fois Y} and those of the spaces {style d'affichage X} et {style d'affichage Y} . The theorem first appeared in a 1953 paper in the American Journal of Mathematics by Samuel Eilenberg and Joseph A. Zilber. One possible route to a proof is the acyclic model theorem.

Contenu 1 Énoncé du théorème 2 Statement in terms of composite maps 3 The coproduct 4 Statement in cohomology 5 Généralisations 6 Conséquences 7 Voir également 8 References Statement of the theorem The theorem can be formulated as follows. Supposer {style d'affichage X} et {style d'affichage Y} are topological spaces, Then we have the three chain complexes {displaystyle C_{*}(X)} , {displaystyle C_{*}(Oui)} , et {displaystyle C_{*}(X fois Y)} . (The argument applies equally to the simplicial or singular chain complexes.) We also have the tensor product complex {displaystyle C_{*}(X)otimes C_{*}(Oui)} , whose differential is, par définition, {style d'affichage partiel _{C_{*}(X)otimes C_{*}(Oui)}(sigma otimes tau )=partial _{X}sigma otimes tau +(-1)^{p}sigma otimes partial _{Oui}oui } pour {displaystyle sigma in C_{p}(X)} et {style d'affichage partiel _{X}} , {style d'affichage partiel _{Oui}} the differentials on {displaystyle C_{*}(X)} , {displaystyle C_{*}(Oui)} .

Then the theorem says that we have chain maps {displaystyle Fcolon C_{*}(X fois Y)rightarrow C_{*}(X)otimes C_{*}(Oui),quad Gcolon C_{*}(X)otimes C_{*}(Oui)rightarrow C_{*}(X fois Y)} tel que {style d'affichage FG} is the identity and {displaystyle GF} is chain-homotopic to the identity. En outre, the maps are natural in {style d'affichage X} et {style d'affichage Y} . Consequently the two complexes must have the same homology: {style d'affichage H_{*}(C_{*}(X fois Y))cong H_{*}(C_{*}(X)otimes C_{*}(Oui)).} Statement in terms of composite maps The original theorem was proven in terms of acyclic models but more mileage was gotten in a phrasing by Eilenberg and Mac Lane using explicit maps. The standard map {style d'affichage F} they produce is traditionally referred to as the Alexander–Whitney map and {style d'affichage G} the Eilenberg–Zilber map. The maps are natural in both {style d'affichage X} et {style d'affichage Y} and inverse up to homotopy: on a {displaystyle FG=mathrm {identifiant} _{C_{*}(X)otimes C_{*}(Oui)},qquad GF-mathrm {identifiant} _{C_{*}(X fois Y)}=partial _{C_{*}(X)otimes C_{*}(Oui)}H+Hpartial _{C_{*}(X)otimes C_{*}(Oui)}} for a homotopy {style d'affichage H} natural in both {style d'affichage X} et {style d'affichage Y} such that further, each of {displaystyle HH} , {displaystyle FH} , et {displaystyle HG} est zéro. This is what would come to be known as a contraction or a homotopy retract datum.

The coproduct The diagonal map {displaystyle Delta colon Xto Xtimes X} induces a map of cochain complexes {displaystyle C_{*}(X)to C_{*}(Xtimes X)} qui, followed by the Alexander–Whitney {style d'affichage F} yields a coproduct {displaystyle C_{*}(X)to C_{*}(X)otimes C_{*}(X)} inducing the standard coproduct on {style d'affichage H_{*}(X)} . With respect to these coproducts on {style d'affichage X} et {style d'affichage Y} , the map {style d'affichage H_{*}(X)otimes H_{*}(Oui)to H_{*}{gros (}C_{*}(X)otimes C_{*}(Oui){gros )} {overset {sim }{à }} H_{*}(X fois Y)} , also called the Eilenberg–Zilber map, becomes a map of differential graded coalgebras. The composite {displaystyle C_{*}(X)to C_{*}(X)otimes C_{*}(X)} itself is not a map of coalgebras.

Statement in cohomology The Alexander–Whitney and Eilenberg–Zilber maps dualize (over any choice of commutative coefficient ring {style d'affichage k} with unity) to a pair of maps {style d'affichage G^{*}colon C^{*}(X fois Y)rightarrow {gros (}C_{*}(X)otimes C_{*}(Oui){gros )}^{*},quad F^{*}colon {gros (}C_{*}(X)otimes C_{*}(Oui){gros )}^{*}rightarrow C^{*}(X fois Y)} which are also homotopy equivalences, as witnessed by the duals of the preceding equations, using the dual homotopy {style d'affichage H^{*}} . The coproduct does not dualize straightforwardly, because dualization does not distribute over tensor products of infinitely-generated modules, but there is a natural injection of differential graded algebras {displaystyle icolon C^{*}(X)parfois C^{*}(Oui)à {gros (}C_{*}(X)otimes C_{*}(Oui){gros )}^{*}} donné par {displaystyle alpha otimes beta mapsto (sigma otimes tau mapsto alpha (sigma )bêta (oui ))} , the product being taken in the coefficient ring {style d'affichage k} . Cette {style d'affichage i} induces an isomorphism in cohomology, so one does have the zig-zag of differential graded algebra maps {displaystyle C^{*}(X)parfois C^{*}(X) {overset {je}{à }} {gros (}C_{*}(X)otimes C_{*}(X){gros )}^{*} {overset {G^{*}}{leftarrow }} C^{*}(Xtimes X){overset {C^{*}(Delta )}{à }}C^{*}(X)} inducing a product {displaystyle smile colon H^{*}(X)otimes H^{*}(X)to H^{*}(X)} in cohomology, known as the cup product, car {style d'affichage H^{*}(je)} et {style d'affichage H^{*}(g)} are isomorphisms. Remplacement {style d'affichage G^{*}} avec {displaystyle F^{*}} so the maps all go the same way, one gets the standard cup product on cochains, given explicitly by {displaystyle alpha otimes beta mapsto {Gros (}sigma mapsto (alpha otimes beta )(F^{*}Delta ^{*}sigma )=somme _{p=0}^{dim sigma }alpha (sigma |_{Delta ^{[0,p]}})cdot beta (sigma |_{Delta ^{[p,dim sigma ]}}){Gros )}} , qui, since cochain evaluation {displaystyle C^{p}(X)otimes C_{q}(X)to k} vanishes unless {style d'affichage p=q} , reduces to the more familiar expression.

Note that if this direct map {displaystyle C^{*}(X)parfois C^{*}(X)to C^{*}(X)} of cochain complexes were in fact a map of differential graded algebras, then the cup product would make {displaystyle C^{*}(X)} a commutative graded algebra, which it is not. This failure of the Alexander–Whitney map to be a coalgebra map is an example the unavailability of commutative cochain-level models for cohomology over fields of nonzero characteristic, and thus is in a way responsible for much of the subtlety and complication in stable homotopy theory.

Generalizations An important generalisation to the non-abelian case using crossed complexes is given in the paper by Andrew Tonks below. This give full details of a result on the (simplicial) classifying space of a crossed complex stated but not proved in the paper by Ronald Brown and Philip J. Higgins on classifying spaces.

Consequences The Eilenberg–Zilber theorem is a key ingredient in establishing the Künneth theorem, which expresses the homology groups {style d'affichage H_{*}(X fois Y)} sur le plan de {style d'affichage H_{*}(X)} et {style d'affichage H_{*}(Oui)} . In light of the Eilenberg–Zilber theorem, the content of the Künneth theorem consists in analysing how the homology of the tensor product complex relates to the homologies of the factors.

See also Acyclic model References Eilenberg, Samuel; Zilber, Joseph A. (1953), "On Products of Complexes", Journal américain de mathématiques, volume. 75, non. 1, pp. 200–204, est ce que je:10.2307/2372629, JSTOR 2372629, M 0052767. Hatcher, Allen (2002), Algebraic Topology, la presse de l'Universite de Cambridge, ISBN 978-0-521-79540-1. Tonks, André (2003), "On the Eilenberg–Zilber theorem for crossed complexes", Journal d'algèbre pure et appliquée, volume. 179, non. 1–2, pp. 199–230, est ce que je:10.1016/S0022-4049(02)00160-3, M 1958384. Marron, Ronald; Higgin, Philippe J.. (1991), "The classifying space of a crossed complex", Actes mathématiques de la Cambridge Philosophical Society, volume. 110, pp. 95–120, CiteSeerX 10.1.1.145.9813, est ce que je:10.1017/S0305004100070158. Catégories: Homological algebraTheorems in algebraic topology

Si vous voulez connaître d'autres articles similaires à Eilenberg–Zilber theorem vous pouvez visiter la catégorie Homological algebra.

Monter

Nous utilisons nos propres cookies et ceux de tiers pour améliorer l'expérience utilisateur Plus d'informations