Ehresmann's lemma

Ehresmann's lemma (Redirected from Ehresmann's theorem) Zur Navigation springen Zur Suche springen In der Mathematik, or specifically, in differential topology, Ehresmann's lemma or Ehresmann's fibration theorem states that if a smooth mapping {displaystyle fcolon Mrightarrow N} , wo {Anzeigestil M} und {Anzeigestil N} are smooth manifolds, is a surjective submersion, and a proper map (im Speziellen, this condition is always satisfied if M is compact), then it is a locally trivial fibration. This is a foundational result in differential topology due to Charles Ehresmann, and has many variants.
See also Thom's first isotopy lemma References Ehresmann, Karl (1951), "Les connexions infinitésimales dans un espace fibré différentiable", Colloque de topologie (espaces fibrés), Bruxelles, 1950, Georges Thone, Liège; Masson et Cie., Paris, pp. 29–55, HERR 0042768 Kolář, Iwan; Michor, Peter W.; Slovák, Jan (1993). Natural operations in differential geometry. Berlin: Springer-Verlag. ISBN 3-540-56235-4. HERR 1202431. Zbl 0782.53013. Kategorien: Theorems in differential topology
Wenn Sie andere ähnliche Artikel wissen möchten Ehresmann's lemma Sie können die Kategorie besuchen Theorems in differential topology.
Hinterlasse eine Antwort