# Doob-Meyer-Zerlegungssatz

Doob–Meyer decomposition theorem The Doob–Meyer decomposition theorem is a theorem in stochastic calculus stating the conditions under which a submartingale may be decomposed in a unique way as the sum of a martingale and an increasing predictable process. It is named for Joseph L. Doob and Paul-André Meyer.

Inhalt 1 Geschichte 2 Class D supermartingales 3 Der Satz 4 Siehe auch 5 Anmerkungen 6 References History In 1953, Doob published the Doob decomposition theorem which gives a unique decomposition for certain discrete time martingales.[1] He conjectured a continuous time version of the theorem and in two publications in 1962 und 1963 Paul-André Meyer proved such a theorem, which became known as the Doob-Meyer decomposition.[2][3] In honor of Doob, Meyer used the term "class D" to refer to the class of supermartingales for which his unique decomposition theorem applied.[4] Class D supermartingales A càdlàg supermartingale {Anzeigestil Z} is of Class D if {Anzeigestil Z_{0}=0} and the collection {Anzeigestil {Z_{T}mid T{Text{ a finite-valued stopping time}}}} is uniformly integrable.[5] The theorem Let {Anzeigestil Z} be a cadlag supermartingale of class D. Dann existiert ein Unikat, increasing, predictable process {Anzeigestil A} mit {Anzeigestil A_{0}=0} so dass {Anzeigestil M_{t}=Z_{t}+EIN_{t}} is a uniformly integrable martingale.[5] See also Doob decomposition theorem Notes ^ Doob 1953 ^ Meyer 1952 ^ Meyer 1963 ^ Protter 2005 ^ Nach oben springen: a b Protter (2005) References Doob, J. L. (1953). Stochastic Processes. Wiley. Meier, Paul-André (1962). "A Decomposition theorem for supermartingales". Illinois Journal of Mathematics. 6 (2): 193–205. Meier, Paul-André (1963). "Decomposition of Supermartingales: the Uniqueness Theorem". Illinois Journal of Mathematics. 7 (1): 1–17. Protter, Philipp (2005). Stochastic Integration and Differential Equations. Springer-Verlag. pp. 107–113. ISBN 3-540-00313-4. Kategorien: Martingale theoryTheorems in statisticsProbability theorems

Wenn Sie andere ähnliche Artikel wissen möchten Doob-Meyer-Zerlegungssatz Sie können die Kategorie besuchen Martingale theory.

Geh hinauf

Wir verwenden eigene Cookies und Cookies von Drittanbietern, um die Benutzererfahrung zu verbessern Mehr Informationen