Donaldson's theorem

Donaldson's theorem In mathematics, and especially differential topology and gauge theory, Donaldson's theorem states that a definite intersection form of a compact, oriented, smooth manifold of dimension 4 is diagonalisable. If the intersection form is positive (négatif) definite, it can be diagonalized to the identity matrix (negative identity matrix) over the integers. The original version[1] of the theorem required the manifold to be simply connected, but it was later improved to apply to 4-manifolds with any fundamental group.[2] Contenu 1 Histoire 2 Idea of proof 3 Rallonges 4 Voir également 5 Remarques 6 References History The theorem was proved by Simon Donaldson. This was a contribution cited for his Fields medal in 1986.
Idea of proof Donaldson's proof utilizes the moduli space {style d'affichage {mathématique {M}}_{P}} of solutions to the anti-self-duality equations on a principal {nom de l'opérateur de style d'affichage {SU} (2)} -bundle {style d'affichage P} over the four-manifold {style d'affichage X} . By the Atiyah–Singer index theorem, the dimension of the moduli space is given by {style d'affichage sombre {mathématique {M}}=8k-3(1-b_{1}(X)+b_{+}(X)),} où {displaystyle c_{2}(P)=k} , {style d'affichage b_{1}(X)} is the first Betti number of {style d'affichage X} et {style d'affichage b_{+}(X)} is the dimension of the positive-definite subspace of {style d'affichage H_{2}(X,mathbb {R} )} with respect to the intersection form. Lorsque {style d'affichage X} is simply-connected with definite intersection form, possibly after changing orientation, one always has {style d'affichage b_{1}(X)=0} et {style d'affichage b_{+}(X)=0} . Thus taking any principal {nom de l'opérateur de style d'affichage {SU} (2)} -bundle with {style d'affichage k=1} , one obtains a moduli space {style d'affichage {mathématique {M}}} of dimension five.
Cobordism given by Yang–Mills moduli space in Donaldson's theorem This moduli space is non-compact and generically smooth, with singularities occurring only at the points corresponding to reducible connections, of which there are exactly {style d'affichage b_{2}(X)} many.[3] Results of Clifford Taubes and Karen Uhlenbeck show that whilst {style d'affichage {mathématique {M}}} is non-compact, its structure at infinity can be readily described.[4][5][6] À savoir, there is an open subset of {style d'affichage {mathématique {M}}} , dire {style d'affichage {mathématique {M}}_{varepsilon }} , such that for sufficiently small choices of parameter {displaystyle varepsilon } , il y a un difféomorphisme {style d'affichage {mathématique {M}}_{varepsilon }{xrightarrow {quad cong quad }}Xtimes (0,varepsilon )} .
The work of Taubes and Uhlenbeck essentially concerns constructing sequences of ASD connections on the four-manifold {style d'affichage X} with curvature becoming infinitely concentrated at any given single point {style d'affichage xin X} . For each such point, in the limit one obtains a unique singular ASD connection, which becomes a well-defined smooth ASD connection at that point using Uhlenbeck's removable singularity theorem.[6][3] Donaldson observed that the singular points in the interior of {style d'affichage {mathématique {M}}} corresponding to reducible connections could also be described: they looked like cones over the complex projective plane {style d'affichage mathbb {CP} ^{2}} , with its orientation reversed.
It is thus possible to compactify the moduli space as follows: Première, cut off each cone at a reducible singularity and glue in a copy of {style d'affichage mathbb {CP} ^{2}} . Deuxièmement, glue in a copy of {style d'affichage X} itself at infinity. The resulting space is a cobordism between {style d'affichage X} and a disjoint union of {style d'affichage b_{2}(X)} copies de {style d'affichage mathbb {CP} ^{2}} with its orientation reversed. The intersection form of a four-manifold is a cobordism invariant up to isomorphism of quadratic forms, from which one concludes the intersection form of {style d'affichage X} is diagonalisable.
Extensions Michael Freedman had previously shown that any unimodular symmetric bilinear form is realized as the intersection form of some closed, oriented four-manifold. Combining this result with the Serre classification theorem and Donaldson's theorem, several interesting results can be seen: 1) Any non-diagonalizable intersection form gives rise to a four-dimensional topological manifold with no differentiable structure (so cannot be smoothed).
2) Two smooth simply-connected 4-manifolds are homeomorphic, si et seulement si, their intersection forms have the same rank, signature, and parity.
See also Unimodular lattice Donaldson theory Yang–Mills equations Rokhlin's theorem Notes ^ Donaldson, S. K. (1983-01-01). "An application of gauge theory to four-dimensional topology". Journal de géométrie différentielle. 18 (2). est ce que je:10.4310/jdg/1214437665. ISSN 0022-040X. ^ Donaldson, S. K. (1987-01-01). "The orientation of Yang-Mills moduli spaces and 4-manifold topology". Journal de géométrie différentielle. 26 (3). est ce que je:10.4310/jdg/1214441485. ISSN 0022-040X. ^ Sauter à: a b Donaldson, S. K. (1983). An application of gauge theory to four-dimensional topology. Journal de géométrie différentielle, 18(2), 279-315. ^ Taubes, C. H. (1982). Self-dual Yang–Mills connections on non-self-dual 4-manifolds. Journal de géométrie différentielle, 17(1), 139-170. ^ Uhlenbeck, K. K. (1982). Connections with L p bounds on curvature. Communications in Mathematical Physics, 83(1), 31-42. ^ Sauter à: a b Uhlenbeck, K. K. (1982). Removable singularities in Yang–Mills fields. Communications in Mathematical Physics, 83(1), 11-29. References Donaldson, S. K. (1983), "An application of gauge theory to four-dimensional topology", Journal de géométrie différentielle, 18 (2): 279–315, est ce que je:10.4310/jdg/1214437665, M 0710056, Zbl 0507.57010 Donaldson, S. K; Kronheimer, P. B. (1990), The Geometry of Four-Manifolds, Monographies mathématiques d'Oxford, ISBN 0-19-850269-9 Freed, ré. S; Uhlenbeck, K. (1984), Instantons and Four-Manifolds, Springer Freedman, M; Quinn, F. (1990), Topology of 4-Manifolds, Princeton University Press Scorpan, UN. (2005), The Wild World of 4-Manifolds, American Mathematical Society Categories: Differential topologyTheorems in topologyQuadratic forms
Si vous voulez connaître d'autres articles similaires à Donaldson's theorem vous pouvez visiter la catégorie Differential topology.
Laisser un commentaire