# Discontinuities of monotone functions

Normalerweise, this theorem appears in literature without a name. It is called Froda's theorem in some recent works; in his 1929 dissertation, Alexandru Froda stated that the result was previously well-known and had provided his own elementary proof for the sake of convenience.[1] Prior work on discontinuities had already been discussed in the 1875 memoir of the French mathematician Jean Gaston Darboux.[2] Inhalt 1 Definitionen 2 Precise statement 3 Beweise 3.1 Proof when the domain is closed and bounded 3.1.1 Nachweisen 1 3.1.2 Nachweisen 2 3.2 Proof of general case 4 Jump functions 5 Siehe auch 6 Anmerkungen 7 Verweise 8 Bibliography Definitions Denote the limit from the left by {displaystyle fleft(x^{-}Rechts):=lim _{znearrow x}f(z)=lim _{Stapel {hto 0}{h>0}}f(x-h)} and denote the limit from the right by {displaystyle fleft(x^{+}Rechts):=lim _{zsearrow x}f(z)=lim _{Stapel {hto 0}{h>0}}f(x+h).} Wenn {displaystyle fleft(x^{+}Rechts)} und {displaystyle fleft(x^{-}Rechts)} exist and are finite then the difference {displaystyle fleft(x^{+}Rechts)-geflogen(x^{-}Rechts)} is called the jump[3] von {Anzeigestil f} bei {displaystyle x.} Consider a real-valued function {Anzeigestil f} of real variable {Anzeigestil x} defined in a neighborhood of a point {displaystyle x.} Wenn {Anzeigestil f} is discontinuous at the point {Anzeigestil x} then the discontinuity will be a removable discontinuity, or an essential discontinuity, or a jump discontinuity (also called a discontinuity of the first kind).[4] If the function is continuous at {Anzeigestil x} then the jump at {Anzeigestil x} ist Null. Darüber hinaus, wenn {Anzeigestil f} is not continuous at {Anzeigestil x,} the jump can be zero at {Anzeigestil x} wenn {displaystyle fleft(x^{+}Rechts)= links(x^{-}Rechts)neq f(x).} Precise statement Let {Anzeigestil f} be a real-valued monotone function defined on an interval {displaystyle I.} Then the set of discontinuities of the first kind is at most countable.

One can prove[5][3] that all points of discontinuity of a monotone real-valued function defined on an interval are jump discontinuities and hence, by our definition, der ersten Sorte. With this remark the theorem takes the stronger form: Lassen {Anzeigestil f} be a monotone function defined on an interval {displaystyle I.} Then the set of discontinuities is at most countable.

Proofs This proof starts by proving the special case where the function's domain is a closed and bounded interval {Anzeigestil [a,b].} [6][7] The proof of the general case follows from this special case.

Proof when the domain is closed and bounded Two proofs of this special case are given.

Nachweisen 1 Lassen {Anzeigestil I:=[a,b]} be an interval and let {Anzeigestil f:Ito mathbb {R} } be a non-decreasing function (such as an increasing function). Then for any {Anzeigestil a0} und lass {Anzeigestil x_{1}while if {displaystyle fsearrow } then pick {Anzeigestil y_{d}in mathbb {Q} } so dass {displaystyle fleft(d^{-}Rechts)>y_{d}>fleft(d^{+}Rechts)} hält).

It will now be shown that if {Anzeigestil d,ein D} sind verschieden, say with {Anzeigestil dgeflogen(d^{+}Rechts)geq fleft(e^{-}Rechts)>y_{e}.} So oder so, {Anzeigestil y_{d}neq y_{e}.} Thus every {displaystyle din D} is associated with a unique rational number (said differently, the map {displaystyle Dto mathbb {Q} } definiert von {displaystyle dmapsto y_{d}} ist injektiv). Seit {Anzeigestil mathbb {Q} } is countable, the same must be true of {displaystyle D.} {Anzeigestil blacksquare } Proof of general case Suppose that the domain of {Anzeigestil f} (a monotone real-valued function) is equal to a union of countably many closed and bounded intervals; say its domain is {displaystyle bigcup _{n}links[a_{n},b_{n}Rechts]} (no requirements are placed on these closed and bounded intervals[a]). It follows from the special case proved above that for every index {Anzeigestil n,} the restriction {Anzeigestil f{big vert }_{links[a_{n},b_{n}Rechts]}:links[a_{n},b_{n}Rechts]zu mathbb {R} } von {Anzeigestil f} to the interval {Anzeigestil links[a_{n},b_{n}Rechts]} has at most countably many discontinuities; denote this (countable) set of discontinuities by {displaystyle D_{n}.} Wenn {Anzeigestil f} has a discontinuity at a point {Anzeigestil x_{0}in bigcup _{n}links[a_{n},b_{n}Rechts]} in its domain then either {Anzeigestil x_{0}} is equal to an endpoint of one of these intervals (das ist, {Anzeigestil x_{0}in left{a_{1},b_{1},a_{2},b_{2},ldots right}} ) or else there exists some index {Anzeigestil n} so dass {Anzeigestil a_{n}must be a point of discontinuity for {Anzeigestil f{big vert }_{links[a_{n},b_{n}Rechts]}} (das ist, {Anzeigestil x_{0}in D_{n}} ). Thus the set {Anzeigestil D} of all points of at which {Anzeigestil f} is discontinuous is a subset of {Anzeigestil links{a_{1},b_{1},a_{2},b_{2},ldots right}cup bigcup _{n}D_{n},} which is a countable set (because it is a union of countably many countable sets) so that its subset {Anzeigestil D} must also be countable (because every subset of a countable set is countable). Im Speziellen, because every interval (including open intervals and half open/closed intervals) of real numbers can be written as a countable union of closed and bounded intervals, it follows that any monotone real-valued function defined on an interval has at most countable many discontinuities. To make this argument more concrete, suppose that the domain of {Anzeigestil f} is an interval {Anzeigestil I} that is not closed and bounded (and hence by Heine–Borel theorem not compact). Then the interval can be written as a countable union of closed and bounded intervals {Anzeigestil I_{n}} with the property that any two consecutive intervals have an endpoint in common: {displaystyle I=cup _{n=1}^{unendlich }ICH_{n}.} Wenn {Anzeigestil I=(a,b]{Text{ mit }}ageq -infty } dann {Anzeigestil I_{1}=links[Alpha _{1},bright], ICH_{2}=links[Alpha _{2},Alpha _{1}Rechts],Punkte ,ICH_{n}=links[Alpha _{n},Alpha _{n-1}Rechts],Punkte } wo {Anzeigestil links(Alpha _{n}Rechts)_{n=1}^{unendlich }} is a strictly decreasing sequence such that {Anzeigestil Alpha _{n}rightarrow a.} In a similar way if {Anzeigestil I=[a,b),{Text{ mit }}bleq +infty } or if {Anzeigestil I=(a,b){Text{ mit }}-infty leq a 0 for each n. Definieren {Anzeigestil f_{n}(x)=0,,} zum {Anzeigestil ,,xx_{n}.} Then the jump function, or saltus-function, definiert von {Anzeigestil f(x)=,,Summe _{n=1}^{unendlich }f_{n}(x)=,,Summe _{x_{n}leq x}Lambda _{n}+Summe _{x_{n}

Wenn Sie andere ähnliche Artikel wissen möchten Discontinuities of monotone functions Sie können die Kategorie besuchen Continuous mappings.

Geh hinauf

Wir verwenden eigene Cookies und Cookies von Drittanbietern, um die Benutzererfahrung zu verbessern Mehr Informationen