Dinitz conjecture

Dinitz conjecture In combinatorics, the Dinitz theorem (formerly known as Dinitz conjecture) is a statement about the extension of arrays to partial Latin squares, proposed in 1979 by Jeff Dinitz,[1] and proved in 1994 by Fred Galvin.[2][3] The Dinitz theorem is that given an n × n square array, a set of m symbols with m ≥ n, and for each cell of the array an n-element set drawn from the pool of m symbols, it is possible to choose a way of labeling each cell with one of those elements in such a way that no row or column repeats a symbol. It can also be formulated as a result in graph theory, that the list chromatic index of the complete bipartite graph {Anzeigestil K_{n,n}} gleich {Anzeigestil n} . Das ist, if each edge of the complete bipartite graph is assigned a set of {Anzeigestil n} colors, it is possible to choose one of the assigned colors for each edge such that no two edges incident to the same vertex have the same color.

Galvin's proof generalizes to the statement that, for every bipartite multigraph, the list chromatic index equals its chromatic index. The more general edge list coloring conjecture states that the same holds not only for bipartite graphs, but also for any loopless multigraph. An even more general conjecture states that the list chromatic number of claw-free graphs always equals their chromatic number.[4] The Dinitz theorem is also related to Rota's basis conjecture.[5] References ^ Erdős, P.; Rubin, EIN. L.; Taylor, H. (1979). "Choosability in graphs". Proz. West Coast Conference on Combinatorics, Graph Theory and Computing, Arcata (Pdf). Congressus Numerantium. Vol. 26. pp. 125–157. Vom Original archiviert (Pdf) an 2016-03-09. Abgerufen 2017-04-22. ^ F. Galvin (1995). "The list chromatic index of a bipartite multigraph". Zeitschrift für kombinatorische Theorie. Serie B. 63 (1): 153–158. doi:10.1006/jctb.1995.1011. ^ Zeilberger, D. (1996). "The method of undetermined generalization and specialization illustrated with Fred Galvin's amazing proof of the Dinitz conjecture". American Mathematical Monthly. 103 (3): 233–239. arXiv:math/9506215. doi:10.2307/2975373. ^ Gravier, Sylvain; Maffray, Frédéric (2004). "On the choice number of claw-free perfect graphs". Diskrete Mathematik. 276 (1-3): 211–218. doi:10.1016/S0012-365X(03)00292-9. HERR 2046636. ^ Chow, T. Y. (1995). "On the Dinitz conjecture and related conjectures" (Pdf). Diskrete Mathematik. 145 (1-3): 73–82. doi:10.1016/0012-365X(94)00055-N. External links Weisstein, Erich W. "Dinitz Problem". MathWorld.

This combinatorics-related article is a stub. Sie können Wikipedia helfen, indem Sie es erweitern.

Kategorien: CombinatoricsLatin squaresGraph coloringTheorems in discrete mathematicsConjecturesConjectures that have been provedCombinatorics stubs

Wenn Sie andere ähnliche Artikel wissen möchten Dinitz conjecture Sie können die Kategorie besuchen Kombinatorik.

Hinterlasse eine Antwort

Deine Email-Adresse wird nicht veröffentlicht.

Geh hinauf

Wir verwenden eigene Cookies und Cookies von Drittanbietern, um die Benutzererfahrung zu verbessern Mehr Informationen