Dini's theorem

Dini's theorem In the mathematical field of analysis, Dini's theorem says that if a monotone sequence of continuous functions converges pointwise on a compact space and if the limit function is also continuous, then the convergence is uniform.[1] Contenu 1 Déclaration formelle 2 Preuve 3 Remarques 4 References Formal statement If {style d'affichage X} is a compact topological space, et {style d'affichage (F_{n})_{nin mathbb {N} }} is a monotonically increasing sequence (meaning {style d'affichage f_{n}(X)leq f_{n+1}(X)} pour tous {style d'affichage nin mathbb {N} } et {style d'affichage xin X} ) of continuous real-valued functions on {style d'affichage X} which converges pointwise to a continuous function {displaystyle fcolon Xto mathbb {R} } , then the convergence is uniform. The same conclusion holds if {style d'affichage (F_{n})_{nin mathbb {N} }} is monotonically decreasing instead of increasing. The theorem is named after Ulisse Dini.[2] This is one of the few situations in mathematics where pointwise convergence implies uniform convergence; the key is the greater control implied by the monotonicity. The limit function must be continuous, since a uniform limit of continuous functions is necessarily continuous.

Proof Let {displaystyle varepsilon >0} be given. For each {style d'affichage nin mathbb {N} } , laisser {style d'affichage g_{n}=f-f_{n}} , et laissez {style d'affichage E_{n}} be the set of those {style d'affichage xin X} tel que {style d'affichage g_{n}(X)N} et {style d'affichage x} is a point in {style d'affichage X} , alors {style d'affichage |F(X)-F_{n}(X)|

Si vous voulez connaître d'autres articles similaires à Dini's theorem vous pouvez visiter la catégorie Théorèmes en analyse réelle.

Laisser un commentaire

Votre adresse email ne sera pas publiée.


Nous utilisons nos propres cookies et ceux de tiers pour améliorer l'expérience utilisateur Plus d'informations