# Dini's theorem Dini's theorem In the mathematical field of analysis, Dini's theorem says that if a monotone sequence of continuous functions converges pointwise on a compact space and if the limit function is also continuous, then the convergence is uniform. Inhalt 1 Formale Aussage 2 Nachweisen 3 Anmerkungen 4 References Formal statement If {Anzeigestil X} is a compact topological space, und {Anzeigestil (f_{n})_{nin mathbb {N} }} is a monotonically increasing sequence (meaning {Anzeigestil f_{n}(x)leq f_{n+1}(x)} für alle {Anzeigestil nin mathbb {N} } und {Anzeigestil xin X} ) of continuous real-valued functions on {Anzeigestil X} which converges pointwise to a continuous function {displaystyle fcolon Xto mathbb {R} } , then the convergence is uniform. The same conclusion holds if {Anzeigestil (f_{n})_{nin mathbb {N} }} is monotonically decreasing instead of increasing. The theorem is named after Ulisse Dini. This is one of the few situations in mathematics where pointwise convergence implies uniform convergence; the key is the greater control implied by the monotonicity. The limit function must be continuous, since a uniform limit of continuous functions is necessarily continuous.

Proof Let {displaystyle varepsilon >0} be given. Für jeden {Anzeigestil nin mathbb {N} } , Lassen {Anzeigestil g_{n}=f-f_{n}} , und lass {Anzeigestil E_{n}} be the set of those {Anzeigestil xin X} so dass {Anzeigestil g_{n}(x)N} und {Anzeigestil x} is a point in {Anzeigestil X} , dann {Anzeigestil |f(x)-f_{n}(x)|

Wenn Sie andere ähnliche Artikel wissen möchten Dini's theorem Sie können die Kategorie besuchen Theoreme in der reellen Analysis.

Geh hinauf

Wir verwenden eigene Cookies und Cookies von Drittanbietern, um die Benutzererfahrung zu verbessern Mehr Informationen