# De Rham cohomology

De Rham cohomology (Redirected from De Rham's theorem) Jump to navigation Jump to search For Grothendieck's de Rham cohomology of varieties, see algebraic de Rham cohomology. Vector field corresponding to a differential form on the punctured plane that is closed but not exact, showing that the de Rham cohomology of this space is non-trivial.

In mathematics, de Rham cohomology (named after Georges de Rham) is a tool belonging both to algebraic topology and to differential topology, capable of expressing basic topological information about smooth manifolds in a form particularly adapted to computation and the concrete representation of cohomology classes. It is a cohomology theory based on the existence of differential forms with prescribed properties.

Every exact form is closed, but the reverse is not necessarily true. On the other hand, there is a relation between failure of exactness and existence of "holes". De Rham cohomology groups are a set of invariants of smooth manifolds which make aforementioned relation quantitative,[1] and will be discussed in this article.

The integration on forms concept is of fundamental importance in differential topology, geometry, and physics, and also yields one of the most important examples of cohomology, namely de Rham cohomology, which (roughly speaking) measures precisely the extent to which the fundamental theorem of calculus fails in higher dimensions and on general manifolds.

— Terence Tao, Differential Forms and Integration[2] Contents 1 Definition 2 De Rham cohomology computed 2.1 The n-sphere 2.2 The n-torus 2.3 Punctured Euclidean space 2.4 The Möbius strip 3 De Rham's theorem 4 Sheaf-theoretic de Rham isomorphism 4.1 Proof 5 Related ideas 5.1 Harmonic forms 5.2 Hodge decomposition 6 See also 7 Citations 8 References 9 External links Definition The de Rham complex is the cochain complex of differential forms on some smooth manifold M, with the exterior derivative as the differential: {displaystyle 0to Omega ^{0}(M) {stackrel {d}{to }} Omega ^{1}(M) {stackrel {d}{to }} Omega ^{2}(M) {stackrel {d}{to }} Omega ^{3}(M)to cdots ,} where Ω0(M) is the space of smooth functions on M, Ω1(M) is the space of 1-forms, and so forth. Forms that are the image of other forms under the exterior derivative, plus the constant 0 function in Ω0(M), are called exact and forms whose exterior derivative is 0 are called closed (see Closed and exact differential forms); the relationship d2 = 0 then says that exact forms are closed.

In contrast, closed forms are not necessarily exact. An illustrative case is a circle as a manifold, and the 1-form corresponding to the derivative of angle from a reference point at its centre, typically written as dθ (described at Closed and exact differential forms). There is no function θ defined on the whole circle such that dθ is its derivative; the increase of 2π in going once around the circle in the positive direction implies a multivalued function θ. Removing one point of the circle obviates this, at the same time changing the topology of the manifold.

One prominent example when all closed forms are exact is when the underlying space is contractible to a point, i.e., it is simply connected (no-holes condition). In this case the exterior derivative {displaystyle d} restricted to closed forms has a local inverse called a homotopy operator.[3][4] Since it is also nilpotent,[3] so in this case it makes a dual chain complex with arrows reversed[5] comparing to the de Rham complex. This is the situation described in the Poincare lemma.

The idea behind de Rham cohomology is to define equivalence classes of closed forms on a manifold. One classifies two closed forms α, β ∈ Ωk(M) as cohomologous if they differ by an exact form, that is, if α − β is exact. This classification induces an equivalence relation on the space of closed forms in Ωk(M). One then defines the k-th de Rham cohomology group {displaystyle H_{mathrm {dR} }^{k}(M)} to be the set of equivalence classes, that is, the set of closed forms in Ωk(M) modulo the exact forms.

Note that, for any manifold M composed of m disconnected components, each of which is connected, we have that {displaystyle H_{mathrm {dR} }^{0}(M)cong mathbb {R} ^{m}.} This follows from the fact that any smooth function on M with zero derivative everywhere is separately constant on each of the connected components of M.

De Rham cohomology computed One may often find the general de Rham cohomologies of a manifold using the above fact about the zero cohomology and a Mayer–Vietoris sequence. Another useful fact is that the de Rham cohomology is a homotopy invariant. While the computation is not given, the following are the computed de Rham cohomologies for some common topological objects: The n-sphere For the n-sphere, {displaystyle S^{n}} , and also when taken together with a product of open intervals, we have the following. Let n > 0, m ≥ 0, and I be an open real interval. Then {displaystyle H_{mathrm {dR} }^{k}(S^{n}times I^{m})simeq {begin{cases}mathbb {R} &k=0{text{ or }}k=n,\0&kneq 0{text{ and }}kneq n.end{cases}}} The n-torus The {displaystyle n} -torus is the Cartesian product: {displaystyle T^{n}=underbrace {S^{1}times cdots times S^{1}} _{n}} . Similarly, allowing {displaystyle ngeq 1} here, we obtain {displaystyle H_{mathrm {dR} }^{k}(T^{n})simeq mathbb {R} ^{n choose k}.} We can also find explicit generators for the de Rham cohomology of the torus directly using differential forms. Given a quotient manifold {displaystyle pi :Xto X/G} and a differential form {displaystyle omega in Omega ^{k}(X)} we can say that {displaystyle omega } is {displaystyle G} -invariant if given any diffeomorphism induced by {displaystyle G} , {displaystyle cdot g:Xto X} we have {displaystyle (cdot g)^{*}(omega )=omega } . In particular, the pullback of any form on {displaystyle X/G} is {displaystyle G} -invariant. Also, the pullback is an injective morphism. In our case of {displaystyle mathbb {R} ^{n}/mathbb {Z} ^{n}} the differential forms {displaystyle dx_{i}} are {displaystyle mathbb {Z} ^{n}} -invariant since {displaystyle d(x_{i}+k)=dx_{i}} . But, notice that {displaystyle x_{i}+alpha } for {displaystyle alpha in mathbb {R} } is not an invariant {displaystyle 0} -form. This with injectivity implies that {displaystyle [dx_{i}]in H_{dR}^{1}(T^{n})} Since the cohomology ring of a torus is generated by {displaystyle H^{1}} , taking the exterior products of these forms gives all of the explicit representatives for the de Rham cohomology of a torus.

Punctured Euclidean space Punctured Euclidean space is simply {displaystyle mathbb {R} ^{n}} with the origin removed.

{displaystyle H_{text{dR}}^{k}(mathbb {R} ^{n}setminus {0})cong {begin{cases}mathbb {R} ^{2}&n=1,k=0\mathbb {R} &n>1,k=0,n-1\0&{text{otherwise}}end{cases}}.} The Möbius strip We may deduce from the fact that the Möbius strip, M, can be deformation retracted to the 1-sphere (i.e. the real unit circle), that: {displaystyle H_{mathrm {dR} }^{k}(M)simeq H_{mathrm {dR} }^{k}(S^{1}).} De Rham's theorem Stokes' theorem is an expression of duality between de Rham cohomology and the homology of chains. It says that the pairing of differential forms and chains, via integration, gives a homomorphism from de Rham cohomology {displaystyle H_{mathrm {dR} }^{k}(M)} to singular cohomology groups {displaystyle H^{k}(M;mathbb {R} ).} De Rham's theorem, proved by Georges de Rham in 1931, states that for a smooth manifold M, this map is in fact an isomorphism.

More precisely, consider the map {displaystyle I:H_{mathrm {dR} }^{p}(M)to H^{p}(M;mathbb {R} ),} defined as follows: for any {displaystyle [omega ]in H_{mathrm {dR} }^{p}(M)} , let I(ω) be the element of {displaystyle {text{Hom}}(H_{p}(M),mathbb {R} )simeq H^{p}(M;mathbb {R} )} that acts as follows: {displaystyle H_{p}(M)ni [c]longmapsto int _{c}omega .} The theorem of de Rham asserts that this is an isomorphism between de Rham cohomology and singular cohomology.

The exterior product endows the direct sum of these groups with a ring structure. A further result of the theorem is that the two cohomology rings are isomorphic (as graded rings), where the analogous product on singular cohomology is the cup product.

Sheaf-theoretic de Rham isomorphism The de Rham cohomology is isomorphic to the Čech cohomology {displaystyle H^{*}({mathcal {U}},F)} , where {displaystyle F} is the sheaf of abelian groups determined by {displaystyle F(U)=mathbb {R} } for all connected open sets {displaystyle Usubset M} , and for open sets {displaystyle U,V} such that {displaystyle Usubset V} , the group morphism {displaystyle {text{res}}_{V,U}:{underline {mathbb {R} }}(V)to {underline {mathbb {R} }}(U)} is given by the identity map on {displaystyle mathbb {R} ,} and where {displaystyle {mathcal {U}}} is a good open cover of {displaystyle M} (i.e. all the open sets in the open cover {displaystyle {mathcal {U}}} are contractible to a point, and all finite intersections of sets in {displaystyle {mathcal {U}}} are either empty or contractible to a point). In other words {displaystyle F} is the constant sheaf given by the sheafification of the constant presheaf assigning {displaystyle F(U)=mathbb {R} } .

Stated another way, if {displaystyle M} is a compact C m+1 manifold of dimension {displaystyle m} , then for each {displaystyle kleq m} , there is an isomorphism {displaystyle H_{mathrm {dR} }^{k}(M)cong {check {H}}^{k}(M,{underline {mathbb {R} }})} where the left-hand side is the {displaystyle k} -th de Rham cohomology group and the right-hand side is the Čech cohomology for the constant sheaf with fibre {displaystyle mathbb {R} .} Proof Let {displaystyle Omega ^{k}} denote the sheaf of germs of {displaystyle k} -forms on {displaystyle M} (with {displaystyle Omega ^{0}} the sheaf of {displaystyle C^{m+1}} functions on {displaystyle M} ). By the Poincaré lemma, the following sequence of sheaves is exact (in the category of sheaves): {displaystyle 0to {underline {mathbb {R} }}to Omega ^{0},xrightarrow {d} ,Omega ^{1},xrightarrow {d} ,Omega ^{2},xrightarrow {d} dots xrightarrow {d} ,Omega ^{m}to 0.} This sequence now breaks up into short exact sequences {displaystyle 0to dOmega ^{k-1},{xrightarrow {subset }},Omega ^{k},{xrightarrow {d}},dOmega ^{k}to 0.} Each of these induces a long exact sequence in cohomology. Since the sheaf of {displaystyle C^{m+1}} functions on a manifold admits partitions of unity, the sheaf-cohomology {displaystyle H^{i}(Omega ^{k})} vanishes for {displaystyle i>0} . So the long exact cohomology sequences themselves ultimately separate into a chain of isomorphisms. At one end of the chain is the Čech cohomology and at the other lies the de Rham cohomology.

Related ideas The de Rham cohomology has inspired many mathematical ideas, including Dolbeault cohomology, Hodge theory, and the Atiyah–Singer index theorem. However, even in more classical contexts, the theorem has inspired a number of developments. Firstly, the Hodge theory proves that there is an isomorphism between the cohomology consisting of harmonic forms and the de Rham cohomology consisting of closed forms modulo exact forms. This relies on an appropriate definition of harmonic forms and of the Hodge theorem. For further details see Hodge theory.

Harmonic forms See also: Harmonic differential If M is a compact Riemannian manifold, then each equivalence class in {displaystyle H_{mathrm {dR} }^{k}(M)} contains exactly one harmonic form. That is, every member {displaystyle omega } of a given equivalence class of closed forms can be written as {displaystyle omega =alpha +gamma } where {displaystyle alpha } is exact and {displaystyle gamma } is harmonic: {displaystyle Delta gamma =0} .

Any harmonic function on a compact connected Riemannian manifold is a constant. Thus, this particular representative element can be understood to be an extremum (a minimum) of all cohomologously equivalent forms on the manifold. For example, on a 2-torus, one may envision a constant 1-form as one where all of the "hair" is combed neatly in the same direction (and all of the "hair" having the same length). In this case, there are two cohomologically distinct combings; all of the others are linear combinations. In particular, this implies that the 1st Betti number of a 2-torus is two. More generally, on an {displaystyle n} -dimensional torus {displaystyle T^{n}} , one can consider the various combings of {displaystyle k} -forms on the torus. There are {displaystyle n} choose {displaystyle k} such combings that can be used to form the basis vectors for {displaystyle H_{text{dR}}^{k}(T^{n})} ; the {displaystyle k} -th Betti number for the de Rham cohomology group for the {displaystyle n} -torus is thus {displaystyle n} choose {displaystyle k} .

More precisely, for a differential manifold M, one may equip it with some auxiliary Riemannian metric. Then the Laplacian {displaystyle Delta } is defined by {displaystyle Delta =ddelta +delta d} with {displaystyle d} the exterior derivative and {displaystyle delta } the codifferential. The Laplacian is a homogeneous (in grading) linear differential operator acting upon the exterior algebra of differential forms: we can look at its action on each component of degree {displaystyle k} separately.

If {displaystyle M} is compact and oriented, the dimension of the kernel of the Laplacian acting upon the space of k-forms is then equal (by Hodge theory) to that of the de Rham cohomology group in degree {displaystyle k} : the Laplacian picks out a unique harmonic form in each cohomology class of closed forms. In particular, the space of all harmonic {displaystyle k} -forms on {displaystyle M} is isomorphic to {displaystyle H^{k}(M;mathbb {R} ).} The dimension of each such space is finite, and is given by the {displaystyle k} -th Betti number.

Hodge decomposition Let {displaystyle M} be a compact oriented Riemannian manifold. The Hodge decomposition states that any {displaystyle k} -form on {displaystyle M} uniquely splits into the sum of three L2 components: {displaystyle omega =alpha +beta +gamma ,} where {displaystyle alpha } is exact, {displaystyle beta } is co-exact, and {displaystyle gamma } is harmonic.

One says that a form {displaystyle beta } is co-closed if {displaystyle delta beta =0} and co-exact if {displaystyle beta =delta eta } for some form {displaystyle eta } , and that {displaystyle gamma } is harmonic if the Laplacian is zero, {displaystyle Delta gamma =0} . This follows by noting that exact and co-exact forms are orthogonal; the orthogonal complement then consists of forms that are both closed and co-closed: that is, of harmonic forms. Here, orthogonality is defined with respect to the L2 inner product on {displaystyle Omega ^{k}(M)} : {displaystyle (alpha ,beta )=int _{M}alpha wedge {star beta }.} By use of Sobolev spaces or distributions, the decomposition can be extended for example to a complete (oriented or not) Riemannian manifold.[6] See also Hodge theory Integration along fibers (for de Rham cohomology, the pushforward is given by integration) Sheaf theory Citations ^ Lee 2013, p. 440. ^ Terence, Tao. "Differential Forms and Integration" (PDF). ^ Jump up to: a b Edelen, Dominic G. B. (2011). Applied exterior calculus (Revised ed.). Mineola, N.Y.: Dover Publications. ISBN 978-0-486-43871-9. OCLC 56347718. ^ Warner, Frank W. (1983). Foundations of differentiable manifolds and Lie groups. New York: Springer. ISBN 0-387-90894-3. OCLC 9683855. ^ Kycia, Radosław Antoni (2020). "The Poincare Lemma, Antiexact Forms, and Fermionic Quantum Harmonic Oscillator". Results in Mathematics. 75 (3): 122. doi:10.1007/s00025-020-01247-8. ISSN 1422-6383. S2CID 199472766. ^ Jean-Pierre Demailly, Complex Analytic and Differential Geometry Ch VIII, § 3. References Lee, John M. (2013). Introduction to Smooth Manifolds. Springer-Verlag. ISBN 978-1-4419-9981-8. Bott, Raoul; Tu, Loring W. (1982), Differential Forms in Algebraic Topology, Berlin, New York: Springer-Verlag, ISBN 978-0-387-90613-3 Griffiths, Phillip; Harris, Joseph (1994), Principles of algebraic geometry, Wiley Classics Library, New York: John Wiley & Sons, ISBN 978-0-471-05059-9, MR 1288523 Warner, Frank (1983), Foundations of Differentiable Manifolds and Lie Groups, Berlin, New York: Springer-Verlag, ISBN 978-0-387-90894-6 External links Idea of the De Rham Cohomology in Mathifold Project "De Rham cohomology", Encyclopedia of Mathematics, EMS Press, 2001 [1994] hide vte Manifolds (Glossary) Basic concepts Topological manifold AtlasDifferentiable/Smooth manifold Differential structureSmooth atlasSubmanifoldRiemannian manifoldSmooth mapSubmersionPushforwardTangent spaceDifferential formVector field Main results (list) Atiyah–Singer indexDarboux'sDe Rham'sFrobeniusGeneralized StokesHopf–RinowNoether'sSard'sWhitney embedding Maps CurveDiffeomorphism LocalGeodesicExponential map in Lie theoryFoliationImmersionIntegral curveLie derivativeSectionSubmersion Types of manifolds Closed(Almost) Complex(Almost) ContactFiberedFinslerFlatG-structureHadamardHermitianHyperbolicKählerKenmotsuLie group Lie algebraManifold with boundaryOrientedParallelizablePoissonPrimeQuaternionicHypercomplex(Pseudo−, Sub−) RiemannianRizza(Almost) SymplecticTame Tensors Vectors DistributionLie bracketPushforwardTangent space bundleTorsionVector fieldVector flow Covectors Closed/ExactCovariant derivativeCotangent space bundleDe Rham cohomologyDifferential form Vector-valuedExterior derivativeInterior productPullbackRicci curvature flowRiemann curvature tensorTensor field densityVolume formWedge product Bundles AdjointAffineAssociatedCotangentDualFiber(Co) FibrationJetLie algebra(Stable) NormalPrincipalSpinorSubbundleTangentTensorVector Connections AffineCartanEhresmannFormGeneralizedKoszulLevi-CivitaPrincipalVectorParallel transport Related Classification of manifoldsGauge theoryHistoryMorse theoryMoving frameSingularity theory Generalizations Banach manifoldDiffeologyDiffietyFréchet manifoldK-theoryOrbifoldSecondary calculus over commutative algebrasSheafStratifoldSupermanifoldTopologically stratified space Categories: Cohomology theoriesDifferential forms

Si quieres conocer otros artículos parecidos a **De Rham cohomology** puedes visitar la categoría **Cohomology theories**.

Deja una respuesta