De Gua's theorem

De Gua's theorem Tetrahedron with a right-angle corner in O In mathematics, De Gua's theorem is a three-dimensional analog of the Pythagorean theorem named after Jean Paul de Gua de Malves. It states that if a tetrahedron has a right-angle corner (like the corner of a cube), then the square of the area of the face opposite the right-angle corner is the sum of the squares of the areas of the other three faces: {style d'affichage A_{abc}^{2}=A_{Couleur {bleu}ABO}^{2}+UN_{Couleur {vert}ACO}^{2}+UN_{Couleur {rouge}BCO}^{2}} Generalizations The Pythagorean theorem and de Gua's theorem are special cases (n = 2, 3) of a general theorem about n-simplices with a right-angle corner. Cette, à son tour, is a special case of a yet more general theorem by Donald R. Conant and William A. Beyer,[1] which can be stated as follows.

Let U be a measurable subset of a k-dimensional affine subspace of {style d'affichage mathbb {R} ^{n}} (alors {displaystyle kleq n} ). For any subset {displaystyle Isubseteq {1,ldots ,n}} with exactly k elements, laisser {style d'affichage U_{je}} be the orthogonal projection of U onto the linear span of {displaystyle e_{je_{1}},ldots ,e_{je_{k}}} , où {style d'affichage I={je_{1},ldots ,je_{k}}} et {displaystyle e_{1},ldots ,e_{n}} is the standard basis for {style d'affichage mathbb {R} ^{n}} . Alors {nom de l'opérateur de style d'affichage {volume} _{k}^{2}(tu)=somme _{je}nom de l'opérateur {volume} _{k}^{2}(U_{je}),} où {nom de l'opérateur de style d'affichage {volume} _{k}(tu)} is the k-dimensional volume of U and the sum is over all subsets {displaystyle Isubseteq {1,ldots ,n}} with exactly k elements.

De Gua's theorem and its generalisation (au dessus) to n-simplices with right-angle corners correspond to the special case where k = n−1 and U is an (n−1)-simplex in {style d'affichage mathbb {R} ^{n}} with vertices on the co-ordinate axes. Par exemple, suppose n = 3, k = 2 and U is the triangle {displaystyle triangle ABC} dans {style d'affichage mathbb {R} ^{3}} with vertices A, B and C lying on the {style d'affichage x_{1}} -, {style d'affichage x_{2}} - et {style d'affichage x_{3}} -axes, respectivement. The subsets {style d'affichage I} de {style d'affichage {1,2,3}} with exactly 2 elements are {style d'affichage {2,3}} , {style d'affichage {1,3}} et {style d'affichage {1,2}} . Par définition, {style d'affichage U_{{2,3}}} is the orthogonal projection of {displaystyle U=triangle ABC} onto the {style d'affichage x_{2}X_{3}} -plane, alors {style d'affichage U_{{2,3}}} is the triangle {displaystyle triangle OBC} with vertices O, B and C, where O is the origin of {style d'affichage mathbb {R} ^{3}} . De la même manière, {style d'affichage U_{{1,3}}=triangle AOC} et {style d'affichage U_{{1,2}}=triangle ABO} , so the Conant–Beyer theorem says {nom de l'opérateur de style d'affichage {volume} _{2}^{2}(triangle ABC)=nomopérateur {volume} _{2}^{2}(triangle OBC)+nom de l'opérateur {volume} _{2}^{2}(triangle AOC)+nom de l'opérateur {volume} _{2}^{2}(triangle ABO),} which is de Gua's theorem.

The generalisation of de Gua's theorem to n-simplices with right-angle corners can also be obtained as a special case from the Cayley–Menger determinant formula.

History Jean Paul de Gua de Malves (1713–85) published the theorem in 1783, but around the same time a slightly more general version was published by another French mathematician, Charles de Tinseau d'Amondans (1746–1818), aussi bien. However the theorem had also been known much earlier to Johann Faulhaber (1580–1635) and René Descartes (1596–1650).[2][3] See also Vector area and projected area Bivector Notes ^ Donald R Conant & William A Beyer (Mar 1974). "Generalized Pythagorean Theorem". Le mensuel mathématique américain. Mathematical Association of America. 81 (3): 262–265. est ce que je:10.2307/2319528. JSTOR 2319528. ^ Weistein, Eric W. "de Gua's theorem". MathWorld. ^ Howard Whitley Eves: Great Moments in Mathematics (before 1650). Mathematical Association of America, 1983, ISBN 9780883853108, S. 37 (excerpt, p. 37, at Google Books) References Weisstein, Eric W. "de Gua's theorem". MathWorld. Sergio A. Alvarez: Note on an n-dimensional Pythagorean theorem, Carnegie Mellon University. De Gua's Theorem, Pythagorean theorem in 3-D — Graphical illustration and related properties of the tetrahedron. Further reading Kheyfits, Alexandre (2004). "The Theorem of Cosines for Pyramids". Le journal de mathématiques du collège. Mathematical Association of America. 35 (5): 385–388. JSTOR 4146849. Proof of de Gua's theorem and of generalizations to arbitrary tetrahedra and to pyramids. Lévy-Leblond, Jean-Marc (2020). "The Theorem of Cosines for Pyramids". The Mathematical Intelligencer. SpringerLink. Application of de Gua's theorem for proving a special case of Heron's formula. Catégories: Theorems in geometryEuclidean geometry

Si vous voulez connaître d'autres articles similaires à De Gua's theorem vous pouvez visiter la catégorie Géométrie euclidienne.

Laisser un commentaire

Votre adresse email ne sera pas publiée.


Nous utilisons nos propres cookies et ceux de tiers pour améliorer l'expérience utilisateur Plus d'informations