Davenport–Schmidt theorem

Davenport–Schmidt theorem In mathematics, specifically the area of Diophantine approximation, the Davenport–Schmidt theorem tells us how well a certain kind of real number can be approximated by another kind. Specifically it tells us that we can get a good approximation to irrational numbers that are not quadratic by using either quadratic irrationals or simply rational numbers. It is named after Harold Davenport and Wolfgang M. Schmidt.

Contenu 1 Déclaration 2 Remarques 3 Références 4 External links Statement Given a number α which is either rational or a quadratic irrational, we can find unique integers x, y, and z such that x, y, and z are not all zero, the first non-zero one among them is positive, they are relatively prime, et nous avons {displaystyle xalpha ^{2}+yalpha +z=0.} If α is a quadratic irrational we can take x, y, and z to be the coefficients of its minimal polynomial. If α is rational we will have x = 0. With these integers uniquely determined for each such α we can define the height of α to be {style d'affichage H(alpha )=max{|X|,|y|,|z|}.} The theorem then says that for any real number ξ which is neither rational nor a quadratic irrational, we can find infinitely many real numbers α which are rational or quadratic irrationals and which satisfy {style d'affichage |xi -alpha | 160/9.[1] While the theorem is related to Roth's theorem, its real use lies in the fact that it is effective, in the sense that the constant C can be worked out for any given ξ.

Remarques ^ H. Davenport, Wolfgang M. Schmidt, "Approximation to real numbers by quadratic irrationals," Journal d'arithmétique 13, (1967). References Wolfgang M. Schmidt. Diophantine approximation. Notes de cours en mathématiques 785. Springer. (1980 [1996 with minor corrections]) Wolfgang M. Schmidt.Diophantine approximations and Diophantine equations, Notes de cours en mathématiques, Maison d'édition Springer 2000 Liens externes "Davenport-Schmidt theorem". PlanèteMath. Catégories: Diophantine approximationTheorems in number theory

Si vous voulez connaître d'autres articles similaires à Davenport–Schmidt theorem vous pouvez visiter la catégorie Diophantine approximation.

Laisser un commentaire

Votre adresse email ne sera pas publiée.


Nous utilisons nos propres cookies et ceux de tiers pour améliorer l'expérience utilisateur Plus d'informations