# teorema de Darboux

Darboux's theorem is a theorem in the mathematical field of differential geometry and more specifically differential forms, partially generalizing the Frobenius integration theorem. It is a foundational result in several fields, the chief among them being symplectic geometry. The theorem is named after Jean Gaston Darboux[1] who established it as the solution of the Pfaff problem.[2] One of the many consequences of the theorem is that any two symplectic manifolds of the same dimension are locally symplectomorphic to one another. Aquilo é, every 2n-dimensional symplectic manifold can be made to look locally like the linear symplectic space Cn with its canonical symplectic form. There is also an analogous consequence of the theorem as applied to contact geometry.

Conteúdo 1 Statement and first consequences 2 Comparison with Riemannian geometry 3 Veja também 4 Notas 5 Referências 6 External links Statement and first consequences The precise statement is as follows.[3] Suponha que {estilo de exibição teta } is a differential 1-form on an n dimensional manifold, de tal modo que {matemática de estilo de exibição {d} teta } has constant rank p. Se {displaystyle theta wedge left(matemática {d} theta right)^{p}=0} em toda parte, then there is a local system of coordinates {estilo de exibição x_{1},ldots ,x_{n-p},s_{1},ldots ,s_{p}} in which {displaystyle theta =x_{1},matemática {d} s_{1}+ldots +x_{p},matemática {d} s_{p}} .

Se, por outro lado, {displaystyle theta wedge left(matemática {d} theta right)^{p}neq 0} em toda parte, then there is a local system of coordinates ' {estilo de exibição x_{1},ldots ,x_{n-p},s_{1},ldots ,s_{p}} in which {displaystyle theta =x_{1},matemática {d} s_{1}+ldots +x_{p},matemática {d} s_{p}+matemática {d} x_{p+1}} .

Observe que se {displaystyle theta wedge left(matemática {d} theta right)^{p}neq 0} everywhere and {displaystyle n=2p+1} então {estilo de exibição teta } is a contact form.

Em particular, Suponha que {displaystyle ômega } is a symplectic 2-form on an n=2m dimensional manifold M. In a neighborhood of each point p of M, by the Poincaré lemma, there is a 1-form {estilo de exibição teta } com {matemática de estilo de exibição {d} theta =omega } . Além disso, {estilo de exibição teta } satisfies the first set of hypotheses in Darboux's theorem, and so locally there is a coordinate chart U near p in which {displaystyle theta =x_{1},matemática {d} s_{1}+ldots +x_{m},matemática {d} s_{m}} .

Taking an exterior derivative now shows {displaystyle omega =mathrm {d} theta =mathrm {d} x_{1}wedge mathrm {d} s_{1}+ldots +mathrm {d} x_{m}wedge mathrm {d} s_{m}} The chart U is said to be a Darboux chart around p.[4] The manifold M can be covered by such charts.

To state this differently, identify {estilo de exibição mathbb {R} ^{2m}} com {estilo de exibição mathbb {C} ^{m}} by letting {estilo de exibição z_{j}=x_{j}+{textit {eu}},s_{j}} . Se {displaystyle varphi colon Uto mathbb {C} ^{n}} is a Darboux chart, então {displaystyle ômega } is the pullback of the standard symplectic form {displaystyle omega _{0}} sobre {estilo de exibição mathbb {C} ^{n}} : {displaystyle omega =phi ^{*}ômega _{0}.,} Comparison with Riemannian geometry This result implies that there are no local invariants in symplectic geometry: a Darboux basis can always be taken, valid near any given point. This is in marked contrast to the situation in Riemannian geometry where the curvature is a local invariant, an obstruction to the metric being locally a sum of squares of coordinate differentials.

The difference is that Darboux's theorem states that ω can be made to take the standard form in an entire neighborhood around p. Na geometria riemanniana, the metric can always be made to take the standard form at any given point, but not always in a neighborhood around that point.

See also Carathéodory–Jacobi–Lie theorem, a generalization of this theorem. Symplectic basis Notes ^ Darboux (1882). ^ Pfaff (1814–1815). ^ Sternberg (1964) p. 140-141. ^ Cf. with McDuff and Salamon (1998) p. 96. References Darboux, Gaston (1882). "Sur le problème de Pfaff". Touro. Sci. Matemática. 6: 14–36, 49-68. Pfaff, Johann Friedrich (1814–1815). "Methodus generalis, aequationes differentiarum partialium nec non aequationes differentiales vulgates, ultrasque primi ordinis, inter quotcunque variables, complete integrandi". Abhandlungen der Königlichen Akademie der Wissenschaften in Berlin: 76-136. Sternberg, Shlomo (1964). Lectures on Differential Geometry. Prentice Hall. McDuff, D.; Salamon, D. (1998). Introduction to Symplectic Topology. imprensa da Universidade de Oxford. ISBN 0-19-850451-9. links externos "Proof of Darboux's Theorem". PlanetMath. G. Darboux, "On the Pfaff Problem," transl. by D. H. Delphenich G. Darboux, "On the Pfaff Problem (cont.)," transl. by D. H. Delphenich Categories: Differential systemsSymplectic geometryCoordinate systems in differential geometryTheorems in differential geometryMathematical physics

Se você quiser conhecer outros artigos semelhantes a teorema de Darboux você pode visitar a categoria Coordinate systems in differential geometry.

Ir para cima

Usamos cookies próprios e de terceiros para melhorar a experiência do usuário Mais informação