# Théorème de Darboux

Darboux's theorem is a theorem in the mathematical field of differential geometry and more specifically differential forms, partially generalizing the Frobenius integration theorem. It is a foundational result in several fields, the chief among them being symplectic geometry. The theorem is named after Jean Gaston Darboux[1] who established it as the solution of the Pfaff problem.[2] One of the many consequences of the theorem is that any two symplectic manifolds of the same dimension are locally symplectomorphic to one another. C'est-à-dire, every 2n-dimensional symplectic manifold can be made to look locally like the linear symplectic space Cn with its canonical symplectic form. There is also an analogous consequence of the theorem as applied to contact geometry.

Contenu 1 Statement and first consequences 2 Comparison with Riemannian geometry 3 Voir également 4 Remarques 5 Références 6 External links Statement and first consequences The precise statement is as follows.[3] Supposer que {thêta de style d'affichage } is a differential 1-form on an n dimensional manifold, tel que {style d'affichage mathrm {ré} thêta } has constant rank p. Si {displaystyle theta wedge left(mathrm {ré} thêta droite)^{p}=0} partout, then there is a local system of coordinates {style d'affichage x_{1},ldots ,X_{n-p},y_{1},ldots ,y_{p}} in which {displaystyle theta =x_{1},mathrm {ré} y_{1}+ldots +x_{p},mathrm {ré} y_{p}} .

Si, d'autre part, {displaystyle theta wedge left(mathrm {ré} thêta droite)^{p}neq 0} partout, then there is a local system of coordinates ' {style d'affichage x_{1},ldots ,X_{n-p},y_{1},ldots ,y_{p}} in which {displaystyle theta =x_{1},mathrm {ré} y_{1}+ldots +x_{p},mathrm {ré} y_{p}+mathrm {ré} X_{p+1}} .

Notez que si {displaystyle theta wedge left(mathrm {ré} thêta droite)^{p}neq 0} everywhere and {displaystyle n=2p+1} alors {thêta de style d'affichage } is a contact form.

En particulier, supposer que {style d'affichage oméga } is a symplectic 2-form on an n=2m dimensional manifold M. In a neighborhood of each point p of M, by the Poincaré lemma, there is a 1-form {thêta de style d'affichage } avec {style d'affichage mathrm {ré} theta =omega } . En outre, {thêta de style d'affichage } satisfies the first set of hypotheses in Darboux's theorem, and so locally there is a coordinate chart U near p in which {displaystyle theta =x_{1},mathrm {ré} y_{1}+ldots +x_{m},mathrm {ré} y_{m}} .

Taking an exterior derivative now shows {displaystyle omega =mathrm {ré} theta =mathrm {ré} X_{1}wedge mathrm {ré} y_{1}+ldots +mathrm {ré} X_{m}wedge mathrm {ré} y_{m}} The chart U is said to be a Darboux chart around p.[4] The manifold M can be covered by such charts.

To state this differently, identify {style d'affichage mathbb {R} ^{2m}} avec {style d'affichage mathbb {C} ^{m}} by letting {style d'affichage z_{j}=x_{j}+{textit {je}},y_{j}} . Si {displaystyle varphi colon Uto mathbb {C} ^{n}} is a Darboux chart, alors {style d'affichage oméga } is the pullback of the standard symplectic form {displaystyle omega _{0}} sur {style d'affichage mathbb {C} ^{n}} : {displaystyle omega =phi ^{*}oméga _{0}.,} Comparison with Riemannian geometry This result implies that there are no local invariants in symplectic geometry: a Darboux basis can always be taken, valid near any given point. This is in marked contrast to the situation in Riemannian geometry where the curvature is a local invariant, an obstruction to the metric being locally a sum of squares of coordinate differentials.

The difference is that Darboux's theorem states that ω can be made to take the standard form in an entire neighborhood around p. En géométrie riemannienne, the metric can always be made to take the standard form at any given point, but not always in a neighborhood around that point.

See also Carathéodory–Jacobi–Lie theorem, a generalization of this theorem. Symplectic basis Notes ^ Darboux (1882). ^ Pfaff (1814–1815). ^ Sternberg (1964) p. 140–141. ^ Cf. with McDuff and Salamon (1998) p. 96. References Darboux, Gaston (1882). "Sur le problème de Pfaff". Taureau. SCI. Math. 6: 14–36, 49–68. Pfaff, Johann Friedrich (1814–1815). "Methodus generalis, aequationes differentiarum partialium nec non aequationes differentiales vulgates, ultrasque primi ordinis, inter quotcunque variables, complete integrandi". Abhandlungen der Königlichen Akademie der Wissenschaften in Berlin: 76–136. Sternberg, Shlomo (1964). Lectures on Differential Geometry. Prentice Hall. McDuff, RÉ.; Salamon, ré. (1998). Introduction to Symplectic Topology. Presse universitaire d'Oxford. ISBN 0-19-850451-9. Liens externes "Proof of Darboux's Theorem". PlanèteMath. g. Darboux, "On the Pfaff Problem," trad. par D. H. Delphenich G. Darboux, "On the Pfaff Problem (cont.)," trad. par D. H. Catégories de Delphenich: Differential systemsSymplectic geometryCoordinate systems in differential geometryTheorems in differential geometryMathematical physics

Si vous voulez connaître d'autres articles similaires à Théorème de Darboux vous pouvez visiter la catégorie Coordinate systems in differential geometry.

Monter

Nous utilisons nos propres cookies et ceux de tiers pour améliorer l'expérience utilisateur Plus d'informations