Cramér's theorem (large deviations)

Cramér's theorem (large deviations) Cramér's theorem is a fundamental result in the theory of large deviations, a subdiscipline of probability theory. It determines the rate function of a series of iid random variables. A weak version of this result was first shown by Harald Cramér in 1938.
Statement The logarithmic moment generating function (which is the cumulant-generating function) of a random variable is defined as: {displaystyle Lambda (t)=log operatorname {E} [exp(tX_{1})].} Let {displaystyle X_{1},X_{2},dots } be a sequence of iid real random variables with finite logarithmic moment generating function, e.g. {displaystyle Lambda (t)
References Klenke, Achim (2008). Probability Theory. Berlin: Springer. pp. 508. doi:10.1007/978-1-84800-048-3. ISBN 978-1-84800-047-6. "Cramér theorem", Encyclopedia of Mathematics, EMS Press, 2001 [1994] Categories: Large deviations theoryProbability theorems
Si quieres conocer otros artículos parecidos a Cramér's theorem (large deviations) puedes visitar la categoría Large deviations theory.
Deja una respuesta