Corona theorem

Corona theorem In mathematics, the corona theorem is a result about the spectrum of the bounded holomorphic functions on the open unit disc, conjectured by Kakutani (1941) and proved by Lennart Carleson (1962).

The commutative Banach algebra and Hardy space H∞ consists of the bounded holomorphic functions on the open unit disc D. Its spectrum S (the closed maximal ideals) contains D as an open subspace because for each z in D there is a maximal ideal consisting of functions f with f(z) = 0.

The subspace D cannot make up the entire spectrum S, essentially because the spectrum is a compact space and D is not. The complement of the closure of D in S was called the corona by Newman (1959), and the corona theorem states that the corona is empty, or in other words the open unit disc D is dense in the spectrum. A more elementary formulation is that elements f1,...,fn generate the unit ideal of H∞ if and only if there is some δ>0 such that {estilo de exibição |f_{1}|+cdots +|f_{n}|geq delta } everywhere in the unit ball.

Newman showed that the corona theorem can be reduced to an interpolation problem, which was then proved by Carleson.

Dentro 1979 Thomas Wolff gave a simplified (but unpublished) proof of the corona theorem, described in (Koosis 1980) e (Gamelin 1980).

Cole later showed that this result cannot be extended to all open Riemann surfaces (Gamelin 1978).

As a by-product, of Carleson's work, the Carleson measure was invented which itself is a very useful tool in modern function theory. It remains an open question whether there are versions of the corona theorem for every planar domain or for higher-dimensional domains.

Note that if one assumes the continuity up to the boundary in Corona's theorem, then the conclusion follows easily from the theory of commutative Banach algebra (Rudin 1991).

See also Corona set References Carleson, Lennart (1962), "Interpolations by bounded analytic functions and the corona problem", Anais da Matemática, 76 (3): 547–559, doi:10.2307/1970375, JSTOR 1970375, SENHOR 0141789, Zbl 0112.29702 Gamelin, T. C. (1978), Uniform algebras and Jensen measures., Série de notas de palestras da London Mathematical Society, volume. 32, Cambridge-New York: Cambridge University Press, pp. iii+162, ISBN 978-0-521-22280-8, SENHOR 0521440, Zbl 0418.46042 Gamelin, T. C. (1980), "Wolff's proof of the corona theorem", Jornal de Matemática de Israel, 37 (1-2): 113-119, doi:10.1007/BF02762872, SENHOR 0599306, Zbl 0466.46050 Kakutani, Shizuo (1941). "Concrete representation of abstract (M)-spaces. (A characterization of the space of continuous functions.)". Ana. de matemática. Series 2. 42 (4): 994–1024. doi:10.2307/1968778. HDL:10338.dmlcz/100940. JSTOR 1968778. SENHOR 0005778. Koosis, Paulo (1980), Introduction to Hp-spaces. With an appendix on Wolff's proof of the corona theorem, Série de notas de palestras da London Mathematical Society, volume. 40, Cambridge-New York: Cambridge University Press, pp. xv+376, ISBN 0-521-23159-0, SENHOR 0565451, Zbl 0435.30001 Novo homem, D. J. (1959), "Some remarks on the maximal ideal structure of H∞", Anais da Matemática, 70 (2): 438–445, doi:10.2307/1970324, JSTOR 1970324, SENHOR 0106290, Zbl 0092.11802 Rudin, Walter (1991), Análise funcional, p. 279. Schark, EU. J. (1961), "Maximal ideals in an algebra of bounded analytic functions", Journal of Mathematics and Mechanics, 10: 735–746, SENHOR 0125442, Zbl 0139.30402. esconder vte análise funcional (tópicos – glossário) Espaços BanachBesovFréchetHilbertHölderNuclearOrliczSchwartzSobolevvetor topológico Propriedades barrilledcompletedual (algébrico/topológico)Teoremas localmente convexo, reflexivo e separável Representação de Hahn–BanachRiesz grafo fechadoprincípio da limitação uniformeKakutani ponto fixoKrein–Milmanmin–maxGelfand–NaimarkBanach–Alaoglu Operadores adjointboundedcompactHilbert–Schmidtnormalnucleartrace classtransposeunboundedunitary ÁlgebrasBanach álgebraC*-algebraspectrum of a C*-algebraoperator álgebra álgebra de grupo de um grupo localmente compacto álgebra de von Neumann Problemas abertos invariantes problema de subespaço Conjectura de Mahler Aplicações Espaço de Hardy teoria espectral de equações diferenciais ordinárias núcleo de calor teorema de índice cálculo de variações cálculo funcional operador integral polinômio de Jones teoria quântica topológica de campos geometria não comutativa hipótese de Riemann distribuição (ou funções generalizadas) Tópicos avançados propriedade de aproximação conjunto equilibrado Teoria de Choquet topologia fraca Distância de Banach–Mazur Teoria de Tomita–Takesaki Categorias: Banach algebrasHardy spacesTheorems in complex analysis

Se você quiser conhecer outros artigos semelhantes a Corona theorem você pode visitar a categoria Banach algebras.

Deixe uma resposta

seu endereço de e-mail não será publicado.

Ir para cima

Usamos cookies próprios e de terceiros para melhorar a experiência do usuário Mais informação