Conley–Zehnder theorem

Conley–Zehnder theorem In mathematics, the Conley–Zehnder theorem, named after Charles C. Conley and Eduard Zehnder, provides a lower bound for the number of fixed points of Hamiltonian diffeomorphisms of standard symplectic tori in terms of the topology of the underlying tori. The lower bound is one plus the cup-length of the torus (thus 2n+1, where 2n is the dimension of the considered torus), and it can be strengthen to the rank of the homology of the torus (which is 22n) provided all the fixed points are non-degenerate, this latter condition being generic in the C1-topology.

The theorem was conjectured by Vladimir Arnold, and it was known as the Arnold conjecture on fixed points of symplectomorphisms. Its validity was later extended to more general closed symplectic manifolds by Andreas Floer and several others.

References Conley, C. C.; Zehnder, E. (1983), "The Birkhoff–Lewis fixed point theorem and a conjecture of V. ich. Arnol'd" (Pdf), Mathematische Entdeckungen, 73 (1): 33–49, Bibcode:1983InMat..73...33C, doi:10.1007/BF01393824, ISSN 0020-9910, HERR 0707347, archived from the original on September 27, 2017 Dieser Artikel zur mathematischen Analyse ist ein Stummel. Sie können Wikipedia helfen, indem Sie es erweitern.

Kategorien: Dynamical systemsFixed points (Mathematik)Theorems in analysisMathematical analysis stubs

Wenn Sie andere ähnliche Artikel wissen möchten Conley–Zehnder theorem Sie können die Kategorie besuchen Dynamische Systeme.

Hinterlasse eine Antwort

Deine Email-Adresse wird nicht veröffentlicht.

Geh hinauf

Wir verwenden eigene Cookies und Cookies von Drittanbietern, um die Benutzererfahrung zu verbessern Mehr Informationen