Théorème de Commandino

Commandino's theorem Medians of a tetrahedron intersecting in a point {style d'affichage S} (its centroid), tel que {style d'affichage {frac {|AS|}{|SS_{BCD}|}}={frac {|BS|}{|SS_{ACD}|}}={frac {|CS|}{|SS_{ABD}|}}={frac {|DS|}{|SS_{abc}|}}={frac {3}{1}}} Théorème de Commandino, named after Federico Commandino (1509–1575), states that the four medians of a tetrahedron are concurrent at a point S, which divides them in a 3:1 rapport. In a tetrahedron a median is a line segment that connects a vertex with the centroid of the opposite face – that is, the centroid of the opposite triangle. The point S is also the centroid of the tetrahedron.[1][2][3] Contenu 1 Histoire 2 Généralisations 2.1 Full generality 2.2 Reusch's theorem 2.3 Varignon's theorem 3 Références 4 External links History The theorem is attributed to Commandino, who stated, in his work De Centro Gravitatis Solidorum (The Center of Gravity of Solids, 1565), that the four medians of the tetrahedron are concurrent. Cependant, according to the 19th century scholar Guillaume Libri, Francesco Maurolico (1494–1575) claimed to have found the result earlier. Libri nevertheless thought that it had been known even earlier to Leonardo da Vinci, who seemed to have used it in his work. Julian Coolidge shared that assessment but pointed out that he couldn't find any explicit description or mathematical treatment of the theorem in da Vinci's works.[4] Other scholars have speculated that the result may have already been known to Greek mathematicians during antiquity.[5] Generalizations Commandino's theorem has a direct analog for simplexes of any dimension:[6] Laisser {displaystyle Delta } être un {displaystyle d} -simplex of some dimension {displaystyle d>1} dans {style d'affichage mathbb {R} ^{n};(ré,nin mathbb {N} ,ngeq d)} et laissez {style d'affichage V_{0},V_{1},ldots ,V_{p}} be its vertices. Par ailleurs, laisser {style d'affichage ell _{0},euh _{1},ldots ,euh _{ré}} , be the medians of {displaystyle Delta } , the lines joining each vertex {style d'affichage V_{je}} with the centroid of the opposite {style d'affichage (j-1)} -dimensional facet {style d'affichage V_{0}ldots V_{i-1}V_{je+1}ldots V_{ré}} . Alors, these lines intersect each other in a point {style d'affichage S} , in a ratio of {displaystyle d:1} . Full generality The former analog is easy to prove via the following, more general result, which is analogous to the way levers in physics work:[7] Laisser {style d'affichage m} et {style d'affichage k} be natural numbers, so that in an {style d'affichage mathbb {R} } -vector space {style d'affichage {mathématique {V}}} , {displaystyle m+k} pairwise different points {style d'affichage X_{1},des points ,X_{m},O_{1},des points ,O_{k}dans {mathématique {V}}} are given. Laisser {style d'affichage S_{X}} be the centroid of the points {style d'affichage X_{je};(i=1,points ,m)} , laisser {style d'affichage S_{Oui}} be the centroid of the points {style d'affichage Y_{j};(j=1,dots ,k)} , et laissez {style d'affichage S} be the centroid of all of these {displaystyle m+k} points. Alors, on a {displaystyle S=S_{X}+{frac {k}{m+k}}(S_{Oui}-S_{X})={frac {m}{m+k}}S_{X}+{frac {k}{m+k}}S_{Oui}.} En particulier, the centroid {style d'affichage S} lies on the line {style d'affichage {surligner {{S_{X}}{S_{Oui}}}}} and divides it in a ratio of {style d'affichage k:m} . Reusch's theorem The previous theorem has further interesting consequences other than the aforementioned generalization of Commandino's theorem. It can be used to prove the following theorem about the centroid of a tetrahedron, first described in the Mathematische Unterhaltungen by the German physicist Friedrich Eduard Reusch [de]:[8][9] One may find the centroid of a tetrahedron by taking the midpoints of two pairs of two of its opposite edges and connecting the corresponding midpoints through their respective midline. The intersection point of both midlines will be the centroid of the tetrahedron.

Since a tetrahedron has six edges in three opposite pairs, one obtains the following corollary:[8] In a tetrahedron, the three midlines corresponding to opposite edge midpoints are concurrent, and their intersection point is the centroid of the tetrahedron. Varignon's theorem A specific case of Reusch's theorem where all four vertices of a tetrahedron are coplanar and lie on a single plane, thereby degenerating into a quadrilateral, Varignon's theorem, named after Pierre Varignon, states the following:[10][11] Let a quadrilateral in {style d'affichage mathbb {R} ^{2}} be given. Then the two midlines connecting opposite edge midpoints intersect in the centroid of the quadrilateral and are divided in half by it. References ^ Claudi Alsina, Roger B.. Nelson: A Mathematical Space Odyssey: Solid Geometry in the 21st Century. L'Association mathématique d'Amérique, 2015, ISBN 9780883853580, pp. 97–98 ^ Nathan Altshiller-Court: The Tetrahedron and Its Circumscribed Parallelepiped. Le professeur de mathématiques, Volume. 26, Non. 1 (JANUARY 1933), pp. 46–52 (JSTOR) ^ Norman Schaumberger: Théorème de Commandino. The Two-Year College Mathematics Journal, Volume. 13, Non. 5 (Nov., 1982), p. 331 (JSTOR) ^ Nathan Altshiller Court: Notes on the centroid. Le professeur de mathématiques, Volume. 53, Non. 1 (JANUARY 1960), pp. 34 (JSTOR) ^ Howard Eves: Great Moments in Mathematics (before 1650). MAA, 1983, ISBN 9780883853108, p. 225 ^ Egbert Harzheim (1978). Einführung in die kombinatorische Topologie (en allemand). Darmstadt: Wissenschaftliche Buchgesellschaft. p. 33. ISBN 3-534-07016-X. ^ Egbert Harzheim (1978), Einführung in die Kombinatorische Topologie (en allemand), Darmstadt, p. 31, ISBN 3-534-07016-X ^ Jump up to: a b Friedrich Joseph Pythagoras Riecke (éd.): Mathematische Unterhaltungen. Zweites Heft. 1973, S. 100, 128 ^ In den Mathematische Unterhaltungen (Zweites Heft, S. 128) wird auf die S. 36 von Reuschs Abhandlung Der Spitzbogen verwiesen. ^ Coxter, op. cit., S. 242 ^ DUDEN: Rechnen und Mathematik. 1985, S. 652 Weissstein externe gauche, Eric W. "Commandino's Theorem". MathWorld. A Couple of Nice Extensions of the Median Properties Categories: Theorems in geometryEuclidean geometry

Si vous voulez connaître d'autres articles similaires à Théorème de Commandino vous pouvez visiter la catégorie Géométrie euclidienne.

Laisser un commentaire

Votre adresse email ne sera pas publiée.


Nous utilisons nos propres cookies et ceux de tiers pour améliorer l'expérience utilisateur Plus d'informations