Chowla–Mordell theorem

Chowla–Mordell theorem In mathematics, the Chowla–Mordell theorem is a result in number theory determining cases where a Gauss sum is the square root of a prime number, multiplied by a root of unity. It was proved and published independently by Sarvadaman Chowla and Louis Mordell, autour de 1951.

En détail, si {style d'affichage p} is a prime number, {style d'affichage chi } a nontrivial Dirichlet character modulo {style d'affichage p} , et {style d'affichage G(chi )=sum chi (un)zeta ^{un}} où {displaystyle zeta } is a primitive {style d'affichage p} -th root of unity in the complex numbers, alors {style d'affichage {frac {g(chi )}{|g(chi )|}}} is a root of unity if and only if {style d'affichage chi } is the quadratic residue symbol modulo {style d'affichage p} . The 'if' part was known to Gauss: the contribution of Chowla and Mordell was the 'only if' direction. The ratio in the theorem occurs in the functional equation of L-functions.

References Gauss and Jacobi Sums by Bruce C. Berndt, Ronald J.. Evans and Kenneth S. Williams, Wiley-Interscience, p. 53. Catégories: Cyclotomic fieldsZeta and L-functionsTheorems in number theory

Si vous voulez connaître d'autres articles similaires à Chowla–Mordell theorem vous pouvez visiter la catégorie Cyclotomic fields.

Laisser un commentaire

Votre adresse email ne sera pas publiée.


Nous utilisons nos propres cookies et ceux de tiers pour améliorer l'expérience utilisateur Plus d'informations