Cheng's eigenvalue comparison theorem

Cheng's eigenvalue comparison theorem In Riemannian geometry, Cheng's eigenvalue comparison theorem states in general terms that when a domain is large, the first Dirichlet eigenvalue of its Laplace–Beltrami operator is small. This general characterization is not precise, in part because the notion of "Größe" of the domain must also account for its curvature.[1] The theorem is due to Cheng (1975b) by Shiu-Yuen Cheng. Using geodesic balls, it can be generalized to certain tubular domains (Lee 1990).

Inhalt 1 Satz 2 Siehe auch 3 Verweise 3.1 Zitate 3.2 Bibliography Theorem Let M be a Riemannian manifold with dimension n, and let BM(p, r) be a geodesic ball centered at p with radius r less than the injectivity radius of p ∈ M. For each real number k, let N(k) denote the simply connected space form of dimension n and constant sectional curvature k. Cheng's eigenvalue comparison theorem compares the first eigenvalue λ1(BM(p, r)) of the Dirichlet problem in BM(p, r) with the first eigenvalue in BN(k)(r) for suitable values of k. There are two parts to the theorem: Suppose that KM, the sectional curvature of M, satisfies {Anzeigestil K_{M}leq k.} Dann {Anzeigestil Lambda _{1}links(B_{N(k)}(r)Rechts)leq lambda _{1}links(B_{M}(p,r)Rechts).} The second part is a comparison theorem for the Ricci curvature of M: Suppose that the Ricci curvature of M satisfies, for every vector field X, {Anzeigestil Betreibername {Ric} (X,X)geq k(n-1)|X|^{2}.} Dann, with the same notation as above, {Anzeigestil Lambda _{1}links(B_{N(k)}(r)Rechts)geq lambda _{1}links(B_{M}(p,r)Rechts).} S.Y. Cheng used Barta's theorem to derive the eigenvalue comparison theorem. As a special case, if k = −1 and inj(p) = ∞, Cheng’s inequality becomes λ*(N) ≥ λ*(H n(−1)) which is McKean’s inequality.[2] See also Comparison theorem Eigenvalue comparison theorem References Citations ^ Chavel 1984, p. 77 ^ Chavel 1984, p. 70 Bibliography Bessa, G.P.; Montenegro, J.F. (2008), "On Cheng's eigenvalue comparison theorem", Mathematische Verfahren der Cambridge Philosophical Society, 144 (3): 673–682, doi:10.1017/s0305004107000965, ISSN 0305-0041. Chavel, Isaak (1984), Eigenwerte in der Riemannschen Geometrie, Reine Appl. Mathematik., vol. 115, Akademische Presse. Cheng, Shiu Yuen (1975a), "Eigenfunctions and eigenvalues of Laplacian", Differentialgeometrie (Proz. Sympos. Reine Mathematik., Vol. XXVII, Stanford Univ., Stanford, Calif., 1973), Part 2, Vorsehung, RI: Amerikanische Mathematische Gesellschaft, pp. 185–193, HERR 0378003 Cheng, Shiu Yuen (1975b), "Eigenvalue Comparison Theorems and its Geometric Applications", Mathematik. Z., 143: 289–297, doi:10.1007/BF01214381. Lee, Jeffrey M. (1990), "Eigenvalue Comparison for Tubular Domains", Verfahren der American Mathematical Society, Amerikanische Mathematische Gesellschaft, 109 (3): 843–848, doi:10.2307/2048228, JSTOR 2048228. McKean, Henry (1970), "An upper bound for the spectrum of △ on a manifold of negative curvature", Zeitschrift für Differentialgeometrie, 4: 359–366. Lee, Jeffrey M.; Richardson, Ken (1998), "Riemannian foliations and eigenvalue comparison", Ann. Global Anal. Geom., 16: 497–525, doi:10.1023/EIN:1006573301591/ Kategorien: Theorems in Riemannian geometryChinese mathematical discoveries

Wenn Sie andere ähnliche Artikel wissen möchten Cheng's eigenvalue comparison theorem Sie können die Kategorie besuchen Chinese mathematical discoveries.

Hinterlasse eine Antwort

Deine Email-Adresse wird nicht veröffentlicht.

Geh hinauf

Wir verwenden eigene Cookies und Cookies von Drittanbietern, um die Benutzererfahrung zu verbessern Mehr Informationen