Cauchy's integral theorem

Cauchy's integral theorem (Redirected from Cauchy integral theorem) Jump to navigation Jump to search Not to be confused with Cauchy's integral formula or Cauchy formula for repeated integration. Mathematical analysis → Complex analysis Complex analysis Complex numbers Real numberImaginary numberComplex planeComplex conjugateUnit complex number Complex functions Complex-valued functionAnalytic functionHolomorphic functionCauchy–Riemann equationsFormal power series Basic Theory Zeros and polesCauchy's integral theoremLocal primitiveCauchy's integral formulaWinding numberLaurent seriesIsolated singularityResidue theoremConformal mapSchwarz lemmaHarmonic functionLaplace's equation Geometric function theory People Augustin-Louis CauchyLeonhard EulerCarl Friedrich GaussJacques HadamardKiyoshi OkaBernhard RiemannKarl Weierstrass Mathematics portal vte In mathematics, the Cauchy integral theorem (also known as the Cauchy–Goursat theorem) in complex analysis, named after Augustin-Louis Cauchy (and Édouard Goursat), is an important statement about line integrals for holomorphic functions in the complex plane. Essentially, it says that if {estilo de exibição f(z)} is holomorphic in a simply connected domain Ω, then for any simply closed contour {estilo de exibição C} in Ω, that contour integral is zero.
{estilo de exibição int _{C}f(z),dz=0.} Conteúdo 1 Declaração 1.1 Fundamental theorem for complex line integrals 1.1.1 Formulation on Simply Connected Regions 1.1.2 General Formulation 1.1.3 Main Example 2 Discussão 3 Prova 4 Veja também 5 Referências 6 External links Statement Fundamental theorem for complex line integrals If f(z) is a holomorphic function on an open region U, e {gama de estilo de exibição } is a curve in U from {estilo de exibição z_{0}} para {estilo de exibição z_{1}} então, {estilo de exibição int _{gama }f'(z),dz=f(z_{1})-f(z_{0}).} Também, when f(z) has a single-valued antiderivative in an open region U, then the path integral {estilo de texto int _{gama }f'(z),dz} is path independent for all paths in U.
Formulation on Simply Connected Regions Let {displaystyle Usubseteq mathbb {C} } be a simply connected open set, e deixar {estilo de exibição f:Uto mathbb {C} } ser uma função holomorfa. Deixar {gama de estilo de exibição :[uma,b]to U} be a smooth closed curve. Então: {estilo de exibição int _{gama }f(z),dz=0.} (The condition that {estilo de exibição U} be simply connected means that {estilo de exibição U} has no "holes", or in other words, that the fundamental group of {estilo de exibição U} is trivial.) General Formulation Let {displaystyle Usubseteq mathbb {C} } be an open set, e deixar {estilo de exibição f:Uto mathbb {C} } ser uma função holomorfa. Deixar {gama de estilo de exibição :[uma,b]to U} be a smooth closed curve. Se {gama de estilo de exibição } is homotopic to a constant curve, então: {estilo de exibição int _{gama }f(z),dz=0.} (Recall that a curve is homotopic to a constant curve if there exists a smooth homotopy from the curve to the constant curve. Intuitivamente, this means that one can shrink the curve into a point without exiting the space.) The first version is a special case of this because on a simply connected set, every closed curve is homotopic to a constant curve.
Main Example In both cases, it is important to remember that the curve {gama de estilo de exibição } does not surround any "holes" in the domain, or else the theorem does not apply. A famous example is the following curve: {gama de estilo de exibição (t)=e^{it}quad tin left[0,2pi right],} which traces out the unit circle. Here the following integral: {estilo de exibição int _{gama }{fratura {1}{z}},dz=2pi ineq 0,} is nonzero. The Cauchy integral theorem does not apply here since {estilo de exibição f(z)=1/z} is not defined at {displaystyle z=0} . Intuitivamente, {gama de estilo de exibição } surrounds a "hole" in the domain of {estilo de exibição f} , assim {gama de estilo de exibição } cannot be shrunk to a point without exiting the space. Desta forma, the theorem does not apply.
Discussion As Édouard Goursat showed, Cauchy's integral theorem can be proven assuming only that the complex derivative {estilo de exibição f'(z)} exists everywhere in {estilo de exibição U} . This is significant because one can then prove Cauchy's integral formula for these functions, and from that deduce these functions are infinitely differentiable.
The condition that {estilo de exibição U} be simply connected means that {estilo de exibição U} has no "holes" ou, in homotopy terms, that the fundamental group of {estilo de exibição U} é trivial; por exemplo, every open disk {estilo de exibição U_{z_{0}}={z:deixei|z-z_{0}certo|
Se você quiser conhecer outros artigos semelhantes a Cauchy's integral theorem você pode visitar a categoria Augustin-Louis Cauchy.
Deixe uma resposta