Teorema integrale di Cauchy

Teorema integrale di Cauchy (Redirected from Cauchy integral theorem) Jump to navigation Jump to search Not to be confused with Cauchy's integral formula or Cauchy formula for repeated integration. Mathematical analysis → Complex analysis Complex analysis Complex numbers Real numberImaginary numberComplex planeComplex conjugateUnit complex number Complex functions Complex-valued functionAnalytic functionHolomorphic functionCauchy–Riemann equationsFormal power series Basic Theory Zeros and polesCauchy's integral theoremLocal primitiveCauchy's integral formulaWinding numberLaurent seriesIsolated singularityResidue theoremConformal mapSchwarz lemmaHarmonic functionLaplace's equation Geometric function theory People Augustin-Louis CauchyLeonhard EulerCarl Friedrich GaussJacques HadamardKiyoshi OkaBernhard RiemannKarl Weierstrass Mathematics portal vte In mathematics, the Cauchy integral theorem (also known as the Cauchy–Goursat theorem) in complex analysis, named after Augustin-Louis Cauchy (and Édouard Goursat), is an important statement about line integrals for holomorphic functions in the complex plane. Essentially, it says that if {stile di visualizzazione f(z)} is holomorphic in a simply connected domain Ω, then for any simply closed contour {stile di visualizzazione C} in Ω, that contour integral is zero.
{displaystyle int _{C}f(z),dz=0.} Contenuti 1 Dichiarazione 1.1 Fundamental theorem for complex line integrals 1.1.1 Formulation on Simply Connected Regions 1.1.2 General Formulation 1.1.3 Main Example 2 Discussione 3 Prova 4 Guarda anche 5 Riferimenti 6 External links Statement Fundamental theorem for complex line integrals If f(z) is a holomorphic function on an open region U, e {gamma di stili di visualizzazione } is a curve in U from {stile di visualizzazione z_{0}} a {stile di visualizzazione z_{1}} poi, {displaystyle int _{gamma }f'(z),dz=f(z_{1})-f(z_{0}).} Anche, when f(z) has a single-valued antiderivative in an open region U, then the path integral {stile testo int _{gamma }f'(z),dz} is path independent for all paths in U.
Formulation on Simply Connected Regions Let {displaystyle Usubseteq mathbb {C} } be a simply connected open set, e lascia {stile di visualizzazione f:Uto mathbb {C} } essere una funzione olomorfa. Permettere {gamma di stili di visualizzazione :[un,b]to U} be a smooth closed curve. Quindi: {displaystyle int _{gamma }f(z),dz=0.} (The condition that {stile di visualizzazione U} be simply connected means that {stile di visualizzazione U} has no "holes", o in altre parole, that the fundamental group of {stile di visualizzazione U} is trivial.) General Formulation Let {displaystyle Usubseteq mathbb {C} } be an open set, e lascia {stile di visualizzazione f:Uto mathbb {C} } essere una funzione olomorfa. Permettere {gamma di stili di visualizzazione :[un,b]to U} be a smooth closed curve. Se {gamma di stili di visualizzazione } is homotopic to a constant curve, poi: {displaystyle int _{gamma }f(z),dz=0.} (Recall that a curve is homotopic to a constant curve if there exists a smooth homotopy from the curve to the constant curve. Intuitivamente, this means that one can shrink the curve into a point without exiting the space.) The first version is a special case of this because on a simply connected set, every closed curve is homotopic to a constant curve.
Main Example In both cases, it is important to remember that the curve {gamma di stili di visualizzazione } does not surround any "holes" nel dominio, or else the theorem does not apply. A famous example is the following curve: {gamma di stili di visualizzazione (t)=e^{it}quad tin left[0,2pi right],} which traces out the unit circle. Here the following integral: {displaystyle int _{gamma }{frac {1}{z}},dz=2pi ineq 0,} is nonzero. The Cauchy integral theorem does not apply here since {stile di visualizzazione f(z)=1/z} is not defined at {displaystyle z=0} . Intuitivamente, {gamma di stili di visualizzazione } surrounds a "hole" in the domain of {stile di visualizzazione f} , Così {gamma di stili di visualizzazione } cannot be shrunk to a point without exiting the space. così, the theorem does not apply.
Discussion As Édouard Goursat showed, Cauchy's integral theorem can be proven assuming only that the complex derivative {stile di visualizzazione f'(z)} exists everywhere in {stile di visualizzazione U} . This is significant because one can then prove Cauchy's integral formula for these functions, and from that deduce these functions are infinitely differentiable.
The condition that {stile di visualizzazione U} be simply connected means that {stile di visualizzazione U} has no "holes" o, in homotopy terms, that the fundamental group of {stile di visualizzazione U} è banale; per esempio, every open disk {stile di visualizzazione U_{z_{0}}={z:sinistra|z-z_{0}Giusto|
Se vuoi conoscere altri articoli simili a Teorema integrale di Cauchy puoi visitare la categoria Augustin-Louis Cauchy.
lascia un commento