Stub di algebra astratta

Stub di algebra astratta Teoremi sui gruppi finiti

Teorema di Alperin–Brauer–Gorenstein

In matematica, the Alperin–Brauer–Gorenstein theorem characterizes the finite simple groups with quasidihedral or wreathed[1] Sylow 2-subgroups. These are isomorphic either to three-dimensional projective special linear groups or projective special unitary groups over a finite field of odd order, depending on a certain congruence, or to the Mathieu group
{stile di visualizzazione M_{11}}
. Alperin, Brauer & Gorenstein (1970) proved this in the course of 261 pagine. The subdivision by 2-fusion is sketched there, given as an exercise in Gorenstein (1968, cap. 7), and presented in some detail in Kwon et al. (1980).

Ver teorema

Utilizziamo cookie propri e di terze parti per migliorare l'esperienza dell'utente Maggiori informazioni