# Catalan's conjecture

Catalan's conjecture (Redirected from Mihăilescu's theorem) Jump to navigation Jump to search For Catalan's aliquot sequence conjecture, see Aliquot sequence § Catalan–Dickson conjecture. For Catalan's Mersenne number conjecture, see Double Mersenne number § Catalan–Mersenne number conjecture.

Catalan's conjecture (or Mihăilescu's theorem) is a theorem in number theory that was conjectured by the mathematician Eugène Charles Catalan in 1844 and proven in 2002 by Preda Mihăilescu at Paderborn University.[1][2] The integers 23 und 32 are two perfect powers (das ist, powers of exponent higher than one) of natural numbers whose values (8 und 9, beziehungsweise) are consecutive. The theorem states that this is the only case of two consecutive perfect powers. Das heißt, that Catalan's conjecture — the only solution in the natural numbers of {Anzeigestil x^{a}-y^{b}=1} for a, b > 1, x, y > 0 is x = 3, a = 2, y = 2, b = 3.

Inhalt 1 Geschichte 2 Pillai's conjecture 3 Siehe auch 4 Anmerkungen 5 Verweise 6 External links History The history of the problem dates back at least to Gersonides, who proved a special case of the conjecture in 1343 wo (x, j) was restricted to be (2, 3) oder (3, 2). The first significant progress after Catalan made his conjecture came in 1850 when Victor-Amédée Lebesgue dealt with the case b = 2.[3] Im 1976, Robert Tijdeman applied Baker's method in transcendence theory to establish a bound on a,b and used existing results bounding x,y in terms of a, b to give an effective upper bound for x,j,a,b. Michel Langevin computed a value of {displaystyle exp exp exp exp 730approx 10^{10^{10^{10^{317}}}}} for the bound,[4] resolving Catalan's conjecture for all but a finite number of cases.

Catalan's conjecture was proven by Preda Mihăilescu in April 2002. The proof was published in the Journal für die reine und angewandte Mathematik, 2004. It makes extensive use of the theory of cyclotomic fields and Galois modules. An exposition of the proof was given by Yuri Bilu in the Séminaire Bourbaki.[5] Im 2005, Mihăilescu published a simplified proof.[6] Pillai's conjecture Unsolved problem in mathematics: Does each positive integer occur only finitely many times as a difference of perfect powers?

(more unsolved problems in mathematics) Pillai's conjecture concerns a general difference of perfect powers (sequence A001597 in the OEIS): it is an open problem initially proposed by S. S. Pillai, who conjectured that the gaps in the sequence of perfect powers tend to infinity. This is equivalent to saying that each positive integer occurs only finitely many times as a difference of perfect powers: allgemeiner, in 1931 Pillai conjectured that for fixed positive integers A, B, C the equation {displaystyle Ax^{n}-By^{m}=C} has only finitely many solutions (x, j, m, n) mit (m, n) (2, 2). Pillai proved that the difference {Anzeigestil |Ax^{n}-By^{m}|gg x^{lambda n}} for any λ less than 1, uniformly in m and n.[7] The general conjecture would follow from the ABC conjecture.[7][8] Paul Erdős conjectured[Zitat benötigt] that the ascending sequence {Anzeigestil (a_{n})_{nin mathbb {N} }} of perfect powers satisfies {Anzeigestil a_{n+1}-a_{n}>n^{c}} for some positive constant c and all sufficiently large n.

Pillai's conjecture means that for every natural number n, there are only finitely many pairs of perfect powers with difference n. The list below shows, for n ≤ 64, all solutions for perfect powers less than 1018, as OEIS: A076427. See also OEIS: A103953 for the smallest solution (> 0).

n solution count numbers k such that k and k + n are both perfect powers n solution count numbers k such that k and k + n are both perfect powers 1 1 8 33 2 16, 256 2 1 25 34 0 keiner 3 2 1, 125 35 3 1, 289, 1296 4 3 4, 32, 121 36 2 64, 1728 5 2 4, 27 37 3 27, 324, 14348907 6 0 keiner 38 1 1331 7 5 1, 9, 25, 121, 32761 39 4 25, 361, 961, 10609 8 3 1, 8, 97336 40 4 9, 81, 216, 2704 9 4 16, 27, 216, 64000 41 3 8, 128, 400 10 1 2187 42 0 keiner 11 4 16, 25, 3125, 3364 43 1 441 12 2 4, 2197 44 3 81, 100, 125 13 3 36, 243, 4900 45 4 4, 36, 484, 9216 14 0 keiner 46 1 243 15 3 1, 49, 1295029 47 6 81, 169, 196, 529, 1681, 250000 16 3 9, 16, 128 48 4 1, 16, 121, 21904 17 7 8, 32, 64, 512, 79507, 140608, 143384152904 49 3 32, 576, 274576 18 3 9, 225, 343 50 0 keiner 19 5 8, 81, 125, 324, 503284356 51 2 49, 625 20 2 16, 196 52 1 144 21 2 4, 100 53 2 676, 24336 22 2 27, 2187 54 2 27, 289 23 4 4, 9, 121, 2025 55 3 9, 729, 175561 24 5 1, 8, 25, 1000, 542939080312 56 4 8, 25, 169, 5776 25 2 100, 144 57 3 64, 343, 784 26 3 1, 42849, 6436343 58 0 keiner 27 3 9, 169, 216 59 1 841 28 7 4, 8, 36, 100, 484, 50625, 131044 60 4 4, 196, 2515396, 2535525316 29 1 196 61 2 64, 900 30 1 6859 62 0 keiner 31 2 1, 225 63 4 1, 81, 961, 183250369 32 4 4, 32, 49, 7744 64 4 36, 64, 225, 512 See also Beal's conjecture Equation xy = yx Fermat–Catalan conjecture Mordell curve Ramanujan–Nagell equation Størmer's theorem Tijdeman's theorem Notes ^ Weisstein, Erich W., Catalan's conjecture, MathWorld ^ Mihăilescu 2004 ^ Victor-Amédée Lebesgue (1850), "Sur l'impossibilité, en nombres entiers, de l'équation xm=y2+1", Neue Annalen der Mathematik, 1re série, 9: 178–181 ^ Ribenboim, Paulo (1979), 13 Vorlesungen über den letzten Satz von Fermat, Springer-Verlag, p. 236, ISBN 0-387-90432-8, Zbl 0456.10006 ^ Bilu, Juri (2004), "Catalan's conjecture", Séminaire Bourbaki vol. 2003/04 Exposés 909-923, Sternchen, vol. 294, pp. 1–26 ^ Mihăilescu 2005 ^ Nach oben springen: a b Narkiewicz, Wladyslaw (2011), Rational Number Theory in the 20th Century: From PNT to FLT, Springer-Monographien zur Mathematik, Springer-Verlag, pp. 253–254, ISBN 978-0-857-29531-6 ^ Schmidt, Wolfgang M. (1996), Diophantine approximations and Diophantine equations, Vorlesungsunterlagen in Mathematik, vol. 1467 (2und Aufl.), Springer-Verlag, p. 207, ISBN 3-540-54058-X, Zbl 0754.11020 References Bilu, Juri (2004), "Catalan's conjecture (after Mihăilescu)", Sternchen, 294: vii, 1–26, HERR 2111637 Catalan, Eugen (1844), "Note extraite d'une lettre adressée à l'éditeur", J. Reine Angew. Mathematik. (auf Französisch), 27: 192, doi:10.1515/crll.1844.27.192, HERR 1578392 Cohen, Henri (2005). Démonstration de la conjecture de Catalan [A proof of the Catalan conjecture]. Théorie algorithmique des nombres et équations diophantiennes (auf Französisch). Palaiseau: Éditions de l'École Polytechnique. pp. 1–83. ISBN 2-7302-1293-0. HERR 0222434. Metsänkylä, Tauno (2004), "Catalan's conjecture: another old Diophantine problem solved" (Pdf), Bulletin der American Mathematical Society, 41 (1): 43–57, doi:10.1090/S0273-0979-03-00993-5, HERR 2015449 Mihăilescu, Preda (2004), "Primary Cyclotomic Units and a Proof of Catalan's Conjecture", J. Reine Angew. Mathematik., 2004 (572): 167–195, doi:10.1515/crll.2004.048, HERR 2076124 Mihăilescu, Preda (2005), "Reflection, Bernoulli numbers and the proof of Catalan's conjecture" (Pdf), European Congress of Mathematics, Zurich: Eur. Mathematik. Soc.: 325–340, HERR 2185753 Ribenboim, Paulo (1994), Catalan's Conjecture, Boston, MA: Akademische Presse, Inc., ISBN 0-12-587170-8, HERR 1259738 Predates Mihăilescu's proof. Tijdeman, Robert (1976), "On the equation of Catalan" (Pdf), Acta Arith., 29 (2): 197–209, doi:10.4064/aa-29-2-197-209, HERR 0404137 External links Weisstein, Erich W. "Catalan's conjecture". MathWorld. Ivars Peterson's MathTrek On difference of perfect powers Jeanine Daems: A Cyclotomic Proof of Catalan's Conjecture hide Authority control National libraries France (data)Germany Other SUDOC (Frankreich) 1 Kategorien: ConjecturesConjectures that have been provedDiophantine equationsTheorems in number theory

Wenn Sie andere ähnliche Artikel wissen möchten Catalan's conjecture Sie können die Kategorie besuchen Conjectures.

Geh hinauf

Wir verwenden eigene Cookies und Cookies von Drittanbietern, um die Benutzererfahrung zu verbessern Mehr Informationen