Castigliano's method

Castigliano's method Castigliano's method, named after Carlo Alberto Castigliano, is a method for determining the displacements of a linear-elastic system based on the partial derivatives of the energy. He is known for his two theorems. The basic concept may be easy to understand by recalling that a change in energy is equal to the causing force times the resulting displacement. Perciò, the causing force is equal to the change in energy divided by the resulting displacement. In alternativa, the resulting displacement is equal to the change in energy divided by the causing force. Partial derivatives are needed to relate causing forces and resulting displacements to the change in energy.

Castigliano's first theorem – for forces in an elastic structure Castigliano's method for calculating forces is an application of his first theorem, which states: If the strain energy of an elastic structure can be expressed as a function of generalised displacement qi then the partial derivative of the strain energy with respect to generalised displacement gives the generalised force Qi.

In equation form, {stile di visualizzazione Q_{io}={frac {matematica parziale {u} }{parziale q_{io}}}} where U is the strain energy.

If the force-displacement curve is nonlinear then the complementary strain energy needs to be used instead of strain energy. [1] Castigliano's second theorem – for displacements in a linearly elastic structure.

Castigliano's method for calculating displacements is an application of his second theorem, which states: If the strain energy of a linearly elastic structure can be expressed as a function of generalised force Qi then the partial derivative of the strain energy with respect to generalised force gives the generalised displacement qi in the direction of Qi.

As above this can also be expressed as: {stile di visualizzazione q_{io}={frac {matematica parziale {u} }{partial Q_{io}}}.} Examples For a thin, straight cantilever beam with a load P at the end, the displacement {delta dello stile di visualizzazione } at the end can be found by Castigliano's second theorem : {displaystyle delta ={frac {matematica parziale {u} }{partial P}}} {displaystyle delta ={frac {parziale }{partial P}}int _{0}^{l}{{frac {M^{2}(X)}{2EI}}dx}={frac {parziale }{partial P}}int _{0}^{l}{{frac {(Px)^{2}}{2EI}}dx}} dove {stile di visualizzazione E} is Young's modulus, {stile di visualizzazione I} is the second moment of area of the cross-section, e {stile di visualizzazione M(X)=Px} is the expression for the internal moment at a point at distance {stile di visualizzazione x} from the end. The integral evaluates to: {stile di visualizzazione {inizio{allineato}delta &=int _{0}^{l}{{frac {Px^{2}}{EI}}dx}\&={frac {PL^{3}}{3EI}}.fine{allineato}}} The result is the standard formula given for cantilever beams under end loads.

External links Carlo Alberto Castigliano Castigliano's method: some examples(in tedesco) References ^ History of Strength of Materials, Stephen P. Timoshenko, 1993, Pubblicazioni di Dover, New York hide vte Structural engineering Dynamic analysis Duhamel's integralModal analysis Static analysis Betti's theoremCastigliano's methodConjugate beam methodFEMFlexibility methodMacaulay's methodMoment-area theoremStiffness methodShear and moment diagramTheorem of three moments Structural elements 1-dimensional Beam I-beamLintel Post and lintelSpanCompression memberStrutTie 2-dimensional ArchThin-shell structure Structural support Bracket Theories Euler–Bernoulli beam theoryMohr–Coulomb theoryPlate theoryTimoshenko–Ehrenfest beam theory Categories: Analisi strutturale

Se vuoi conoscere altri articoli simili a Castigliano's method puoi visitare la categoria Analisi strutturale.

lascia un commento

L'indirizzo email non verrà pubblicato.

Vai su

Utilizziamo cookie propri e di terze parti per migliorare l'esperienza dell'utente Maggiori informazioni