Castelnuovo–de Franchis theorem

Castelnuovo–de Franchis theorem In mathematics, the Castelnuovo–de Franchis theorem is a classical result on complex algebraic surfaces. Let X be such a surface, projective and non-singular, and let ω1 and ω2 be two differentials of the first kind on X which are linearly independent but with wedge product 0. Then this data can be represented as a pullback of an algebraic curve: there is a non-singular algebraic curve C, a morphism φ: X → C, and differentials of the first kind ω′1 and ω′2 on C such that φ*(ω′1) = ω1 and φ*(ω′2) = ω2.

This result is due to Guido Castelnuovo and Michele de Franchis (1875–1946).

The converse, that two such pullbacks would have wedge 0, is immediate.

See also de Franchis theorem References Coen, S. (1991), Geometry and Complex Variables, Lecture Notes in Pure and Applied Mathematics, vol. 132, CRC Press, p. 68, ISBN 9780824784454. Categories: Algebraic surfacesTheorems in geometry

Si quieres conocer otros artículos parecidos a Castelnuovo–de Franchis theorem puedes visitar la categoría Algebraic surfaces.

Deja una respuesta

Tu dirección de correo electrónico no será publicada.


Utilizamos cookies propias y de terceros para mejorar la experiencia de usuario Más información