Cartan–Kuranishi prolongation theorem

Cartan–Kuranishi prolongation theorem Given an exterior differential system defined on a manifold M, the Cartan–Kuranishi prolongation theorem says that after a finite number of prolongations the system is either in involution (admits at least one 'large' integral manifold), or is impossible.

Contents 1 History 2 Applications 3 See also 4 References History The theorem is named after Élie Cartan and Masatake Kuranishi.

Applications This theorem is used in infinite-dimensional Lie theory.

See also Cartan-Kähler theorem References M. Kuranishi, On É. Cartan's prolongation theorem of exterior differential systems, Amer. J. Math., vol. 79, 1957, p. 1–47 "Partial differential equations on a manifold", Encyclopedia of Mathematics, EMS Press, 2001 [1994] Categories: Partial differential equationsTheorems in analysis

Si quieres conocer otros artículos parecidos a Cartan–Kuranishi prolongation theorem puedes visitar la categoría Partial differential equations.

Deja una respuesta

Tu dirección de correo electrónico no será publicada.

Subir

Utilizamos cookies propias y de terceros para mejorar la experiencia de usuario Más información