Cartan–Dieudonné theorem

Cartan–Dieudonné theorem For other uses, see Cartan's theorem and Dieudonné's theorem.

En mathématiques, the Cartan–Dieudonné theorem, named after Élie Cartan and Jean Dieudonné, establishes that every orthogonal transformation in an n-dimensional symmetric bilinear space can be described as the composition of at most n reflections.

The notion of a symmetric bilinear space is a generalization of Euclidean space whose structure is defined by a symmetric bilinear form (which need not be positive definite, so is not necessarily an inner product – for instance, a pseudo-Euclidean space is also a symmetric bilinear space). The orthogonal transformations in the space are those automorphisms which preserve the value of the bilinear form between every pair of vectors; dans l'espace euclidien, this corresponds to preserving distances and angles. These orthogonal transformations form a group under composition, called the orthogonal group.

Par exemple, in the two-dimensional Euclidean plane, every orthogonal transformation is either a reflection across a line through the origin or a rotation about the origin (which can be written as the composition of two reflections). Any arbitrary composition of such rotations and reflections can be rewritten as a composition of no more than 2 reflections. De la même manière, in three-dimensional Euclidean space, every orthogonal transformation can be described as a single reflection, a rotation (2 reflections), or an improper rotation (3 reflections). In four dimensions, double rotations are added that represent 4 reflections.

Formal statement Let (V, b) be an n-dimensional, non-degenerate symmetric bilinear space over a field with characteristic not equal to 2. Alors, every element of the orthogonal group O(V, b) is a composition of at most n reflections.

See also Indefinite orthogonal group Coordinate rotations and reflections References Gallier, Jean H. (2001). Geometric Methods and Applications. Textes en mathématiques appliquées. Volume. 38. Springer Verlag. ISBN 0-387-95044-3. Zbl 1031.53001. Gallot, Sylvestre; Hulin, Dominique; Lafontaine, Jacques (2004). Riemannian Geometry. Universitext. Springer Verlag. ISBN 3-540-20493-8. Zbl 1068.53001. Garling, ré. J. H. (2011). Clifford Algebras: Une introduction. Textes des étudiants de la London Mathematical Society. Volume. 78. la presse de l'Universite de Cambridge. ISBN 978-1-10742219-3. Zbl 1235.15025. Lam, J. Oui. (2005). Introduction to quadratic forms over fields. Études supérieures en mathématiques. Volume. 67. Providence, IR: Société mathématique américaine. ISBN 0-8218-1095-2. Zbl 1068.11023. Cet article relatif à l'algèbre abstraite est un bout. Vous pouvez aider Wikipédia en l'agrandissant.

Catégories: Theorems in group theoryBilinear formsAbstract algebra stubs

Si vous voulez connaître d'autres articles similaires à Cartan–Dieudonné theorem vous pouvez visiter la catégorie Abstract algebra stubs.

Laisser un commentaire

Votre adresse email ne sera pas publiée.

Monter

Nous utilisons nos propres cookies et ceux de tiers pour améliorer l'expérience utilisateur Plus d'informations