Carnot's theorem (inradius, circumradius)

Carnot's theorem (inradius, circumradius) Pour d'autres usages, see Carnot's theorem (désambiguïsation). {style d'affichage {commencer{aligné}&DG+DH+DF\={}&|DG|+|DH|-|DF|\={}&R+rend{aligné}}} In Euclidean geometry, Carnot's theorem states that the sum of the signed distances from the circumcenter D to the sides of an arbitrary triangle ABC is {displaystyle DF+Dg+DH=R+r, } where r is the inradius and R is the circumradius of the triangle. Here the sign of the distances is taken to be negative if and only if the open line segment DX (X = F, G, H) lies completely outside the triangle. In the diagram, DF is negative and both DG and DH are positive.

The theorem is named after Lazare Carnot (1753–1823). It is used in a proof of the Japanese theorem for concyclic polygons.

References Claudi Alsina, Roger B. Nelsen: When Less is More: Visualizing Basic Inequalities. MAA, 2009, ISBN 978-0-88385-342-9, p.99 Frédéric Perrier: Carnot's Theorem in Trigonometric Disguise. La gazette mathématique, Le volume 91, Non. 520 (Mars, 2007), pp. 115–117 (JSTOR) David Richeson: The Japanese Theorem for Nonconvex Polygons – Carnot's Theorem. Convergence, Décembre 2013 Weissstein externe gauche, Eric W. ">

Si vous voulez connaître d'autres articles similaires à Carnot's theorem (inradius, circumradius) vous pouvez visiter la catégorie Theorems about triangles and circles.

Laisser un commentaire

Votre adresse email ne sera pas publiée.


Nous utilisons nos propres cookies et ceux de tiers pour améliorer l'expérience utilisateur Plus d'informations