# Théorème papillon

Butterfly theorem For the "butterfly lemma" of group theory, see Zassenhaus lemma. Butterfly theorem The butterfly theorem is a classical result in Euclidean geometry, which can be stated as follows:[1]:p. 78  Let M be the midpoint of a chord PQ of a circle, through which two other chords AB and CD are drawn; AD and BC intersect chord PQ at X and Y correspondingly. Then M is the midpoint of XY.

Contenu 1 Preuve 2 Histoire 3 Références 4 External links Proof Proof of Butterfly theorem A formal proof of the theorem is as follows: Let the perpendiculars XX′ and XX″ be dropped from the point X on the straight lines AM and DM respectively. De la même manière, let YY′ and YY″ be dropped from the point Y perpendicular to the straight lines BM and CM respectively.

Depuis {displaystyle triangle MXX'sim triangle MYY',} {style d'affichage {MX over MY}={XX' over YY'},} {displaystyle triangle MXX''sim triangle MYY'',} {style d'affichage {MX over MY}={XX'' over YY''},} {displaystyle triangle AXX'sim triangle CYY'',} {style d'affichage {XX' over YY''}={AX over CY},} {displaystyle triangle DXX''sim triangle BYY',} {style d'affichage {XX'' over YY'}={DX over BY}.} From the preceding equations and the intersecting chords theorem, it can be seen that {style d'affichage à gauche({MX over MY}droit)^{2}={XX' over YY'}{XX'' over YY''},} {style d'affichage {}={AXcdot DX over CYcdot BY},} {style d'affichage {}={PXcdot QX over PYcdot QY},} {style d'affichage {}={(PM-XM)cdot (MQ+XM) plus de (PM+MY)cdot (QM-MY)},} {style d'affichage {}={(PM)^{2}-(MX)^{2} plus de (PM)^{2}-(MY)^{2}},} since PM = MQ.

Alors {style d'affichage {(MX)^{2} plus de (MY)^{2}}={(PM)^{2}-(MX)^{2} plus de (PM)^{2}-(MY)^{2}}.} Cross-multiplying in the latter equation, {style d'affichage {(MX)^{2}cdot (PM)^{2}-(MX)^{2}cdot (MY)^{2}}={(MY)^{2}cdot (PM)^{2}-(MX)^{2}cdot (MY)^{2}}.} Cancelling the common term {style d'affichage {-(MX)^{2}cdot (MY)^{2}}} from both sides of the resulting equation yields {style d'affichage {(MX)^{2}cdot (PM)^{2}}={(MY)^{2}cdot (PM)^{2}},} hence MX = MY, since MX, MY, and PM are all positive, real numbers.

Ainsi, M is the midpoint of XY.

Other proofs exist,[2] including one using projective geometry.[3] History Proving the butterfly theorem was posed as a problem by William Wallace in The Gentlemen's Mathematical Companion (1803). Three solutions were published in 1804, et en 1805 Sir William Herschel posed the question again in a letter to Wallace. Tour. Thomas Scurr asked the same question again in 1814 in the Gentlemen's Diary or Mathematical Repository.[4] References ^ Johnson, RogerA., Géométrie euclidienne avancée, Dover Publ., 2007 (orig. 1929). ^ Martin Celli, "A Proof of the Butterfly Theorem Using the Similarity Factor of the Two Wings", Forum Géométrique 16, 2016, 337–338. http://forumgeom.fau.edu/FG2016volume16/FG201641.pdf ^ [1], problème 8. ^ William Wallace's 1803 Statement of the Butterfly Theorem, cut-the-knot, récupéré 2015-05-07. External links Wikimedia Commons has media related to Butterfly theorem. The Butterfly Theorem at cut-the-knot A Better Butterfly Theorem at cut-the-knot Proof of Butterfly Theorem at PlanetMath The Butterfly Theorem by Jay Warendorff, le projet de démonstration Wolfram. Weisstein, Eric W. "Butterfly Theorem". MathWorld. Catégories: Euclidean plane geometryTheorems about circles

Si vous voulez connaître d'autres articles similaires à Théorème papillon vous pouvez visiter la catégorie Géométrie plane euclidienne.

Monter

Nous utilisons nos propres cookies et ceux de tiers pour améliorer l'expérience utilisateur Plus d'informations