Théorème papillon

Butterfly theorem For the "butterfly lemma" of group theory, see Zassenhaus lemma. Butterfly theorem The butterfly theorem is a classical result in Euclidean geometry, which can be stated as follows:[1]:p. 78  Let M be the midpoint of a chord PQ of a circle, through which two other chords AB and CD are drawn; AD and BC intersect chord PQ at X and Y correspondingly. Then M is the midpoint of XY.

Contenu 1 Preuve 2 Histoire 3 Références 4 External links Proof Proof of Butterfly theorem A formal proof of the theorem is as follows: Let the perpendiculars XX′ and XX″ be dropped from the point X on the straight lines AM and DM respectively. De la même manière, let YY′ and YY″ be dropped from the point Y perpendicular to the straight lines BM and CM respectively.

Depuis {displaystyle triangle MXX'sim triangle MYY',} {style d'affichage {MX over MY}={XX' over YY'},} {displaystyle triangle MXX''sim triangle MYY'',} {style d'affichage {MX over MY}={XX'' over YY''},} {displaystyle triangle AXX'sim triangle CYY'',} {style d'affichage {XX' over YY''}={AX over CY},} {displaystyle triangle DXX''sim triangle BYY',} {style d'affichage {XX'' over YY'}={DX over BY}.} From the preceding equations and the intersecting chords theorem, it can be seen that {style d'affichage à gauche({MX over MY}droit)^{2}={XX' over YY'}{XX'' over YY''},} {style d'affichage {}={AXcdot DX over CYcdot BY},} {style d'affichage {}={PXcdot QX over PYcdot QY},} {style d'affichage {}={(PM-XM)cdot (MQ+XM) plus de (PM+MY)cdot (QM-MY)},} {style d'affichage {}={(PM)^{2}-(MX)^{2} plus de (PM)^{2}-(MY)^{2}},} since PM = MQ.

Alors {style d'affichage {(MX)^{2} plus de (MY)^{2}}={(PM)^{2}-(MX)^{2} plus de (PM)^{2}-(MY)^{2}}.} Cross-multiplying in the latter equation, {style d'affichage {(MX)^{2}cdot (PM)^{2}-(MX)^{2}cdot (MY)^{2}}={(MY)^{2}cdot (PM)^{2}-(MX)^{2}cdot (MY)^{2}}.} Cancelling the common term {style d'affichage {-(MX)^{2}cdot (MY)^{2}}} from both sides of the resulting equation yields {style d'affichage {(MX)^{2}cdot (PM)^{2}}={(MY)^{2}cdot (PM)^{2}},} hence MX = MY, since MX, MY, and PM are all positive, real numbers.

Ainsi, M is the midpoint of XY.

Other proofs exist,[2] including one using projective geometry.[3] History Proving the butterfly theorem was posed as a problem by William Wallace in The Gentlemen's Mathematical Companion (1803). Three solutions were published in 1804, et en 1805 Sir William Herschel posed the question again in a letter to Wallace. Tour. Thomas Scurr asked the same question again in 1814 in the Gentlemen's Diary or Mathematical Repository.[4] References ^ Johnson, RogerA., Géométrie euclidienne avancée, Dover Publ., 2007 (orig. 1929). ^ Martin Celli, "A Proof of the Butterfly Theorem Using the Similarity Factor of the Two Wings", Forum Géométrique 16, 2016, 337–338. http://forumgeom.fau.edu/FG2016volume16/FG201641.pdf ^ [1], problème 8. ^ William Wallace's 1803 Statement of the Butterfly Theorem, cut-the-knot, récupéré 2015-05-07. External links Wikimedia Commons has media related to Butterfly theorem. The Butterfly Theorem at cut-the-knot A Better Butterfly Theorem at cut-the-knot Proof of Butterfly Theorem at PlanetMath The Butterfly Theorem by Jay Warendorff, le projet de démonstration Wolfram. Weisstein, Eric W. "Butterfly Theorem". MathWorld. Catégories: Euclidean plane geometryTheorems about circles

Si vous voulez connaître d'autres articles similaires à Théorème papillon vous pouvez visiter la catégorie Géométrie plane euclidienne.

Laisser un commentaire

Votre adresse email ne sera pas publiée.

Monter

Nous utilisons nos propres cookies et ceux de tiers pour améliorer l'expérience utilisateur Plus d'informations