# Buckingham π theorem

Buckingham π theorem This article needs additional citations for verification. Aiutaci a migliorare questo articolo aggiungendo citazioni a fonti affidabili. Il materiale non fornito può essere contestato e rimosso. Trova fonti: "Buckingham π theorem" – news · newspapers · books · scholar · JSTOR (aprile 2022) (Scopri come e quando rimuovere questo messaggio modello) Edgar Buckingham circa 1886 In engineering, applied mathematics, and physics, the Buckingham π theorem is a key theorem in dimensional analysis. It is a formalization of Rayleigh's method of dimensional analysis. Loosely, the theorem states that if there is a physically meaningful equation involving a certain number n of physical variables, then the original equation can be rewritten in terms of a set of p = n − k dimensionless parameters π1, p2, ..., πp constructed from the original variables. (Here k is the number of physical dimensions involved; it is obtained as the rank of a particular matrix.) The theorem provides a method for computing sets of dimensionless parameters from the given variables, or nondimensionalization, even if the form of the equation is still unknown.

The Buckingham π theorem indicates that validity of the laws of physics does not depend on a specific unit system. A statement of this theorem is that any physical law can be expressed as an identity involving only dimensionless combinations (ratios or products) of the variables linked by the law (Per esempio, pressure and volume are linked by Boyle's law – they are inversely proportional). If the dimensionless combinations' values changed with the systems of units, then the equation would not be an identity, and the theorem would not hold.

Contenuti 1 Storia 2 Dichiarazione 3 Significato 4 Prova 4.1 Outline 4.2 Formal proof 5 Esempi 5.1 Speed 5.2 The simple pendulum 5.3 Other examples 6 Guarda anche 7 Riferimenti 7.1 Appunti 7.2 Citazioni 7.3 Bibliografia 7.4 Original sources 8 External links History Although named for Edgar Buckingham, the π theorem was first proved by French mathematician Joseph Bertrand[1] in 1878. Bertrand considered only special cases of problems from electrodynamics and heat conduction, but his article contains, in distinct terms, all the basic ideas of the modern proof of the theorem and clearly indicates the theorem's utility for modelling physical phenomena. The technique of using the theorem ("the method of dimensions") became widely known due to the works of Rayleigh. The first application of the π theorem in the general case[Nota 1] to the dependence of pressure drop in a pipe upon governing parameters probably dates back to 1892,[2] a heuristic proof with the use of series expansions, a 1894.[3] Formal generalization of the π theorem for the case of arbitrarily many quantities was given first by A. Vaschy in 1892,[4] then in 1911—apparently independently—by both A. Federman[5] e d. Riabouchinsky,[6] and again in 1914 by Buckingham.[7] It was Buckingham's article that introduced the use of the symbol " {stile di visualizzazione pi _{io}} " for the dimensionless variables (or parameters), and this is the source of the theorem's name.

Statement More formally, il numero {stile di visualizzazione p} of dimensionless terms that can be formed is equal to the nullity of the dimensional matrix, e {stile di visualizzazione k} is the rank. For experimental purposes, different systems that share the same description in terms of these dimensionless numbers are equivalent.

In termini matematici, if we have a physically meaningful equation such as {stile di visualizzazione f(q_{1},q_{2},ldot ,q_{n})=0,} dove {stile di visualizzazione q_{1},ldot ,q_{n}} are the {stile di visualizzazione n} independent physical variables, and they are expressed in terms of {stile di visualizzazione k} independent physical units, then the above equation can be restated as {stile di visualizzazione F(pi_{1},pi_{2},ldot ,pi_{p})=0,} dove {stile di visualizzazione pi _{1},ldot ,pi_{p}} are dimensionless parameters constructed from the {stile di visualizzazione q_{io}} di {displaystyle p=n-k} dimensionless equations — the so-called Pi groups — of the form {stile di visualizzazione pi _{io}=q_{1}^{un_{1}},q_{2}^{un_{2}}cdots q_{n}^{un_{n}},} where the exponents {stile di visualizzazione a_{io}} are rational numbers. (They can always be taken to be integers by redefining {stile di visualizzazione pi _{io}} as being raised to a power that clears all denominators.) Significance The Buckingham π theorem provides a method for computing sets of dimensionless parameters from given variables, even if the form of the equation remains unknown. Tuttavia, the choice of dimensionless parameters is not unique; Buckingham's theorem only provides a way of generating sets of dimensionless parameters and does not indicate the most "physically meaningful".

Two systems for which these parameters coincide are called similar (as with similar triangles, they differ only in scale); they are equivalent for the purposes of the equation, and the experimentalist who wants to determine the form of the equation can choose the most convenient one. Most importantly, Buckingham's theorem describes the relation between the number of variables and fundamental dimensions.

Proof Outline It will be assumed that the space of fundamental and derived physical units forms a vector space over the rational numbers, with the fundamental units as basis vectors, and with multiplication of physical units as the "vector addition" operazione, and raising to powers as the "scalar multiplication" operazione: represent a dimensional variable as the set of exponents needed for the fundamental units (with a power of zero if the particular fundamental unit is not present). Per esempio, the standard gravity {stile di visualizzazione g} has units of {displaystyle D/T^{2}=D^{1}T^{-2}} (distance over time squared), so it is represented as the vector {stile di visualizzazione (1,-2)} with respect to the basis of fundamental units (distance, time).

Making the physical units match across sets of physical equations can then be regarded as imposing linear constraints in the physical-units vector space.

Formal proof Given a system of {stile di visualizzazione n} dimensional variables {stile di visualizzazione q_{1},ldot ,q_{n}} (with physical dimensions) in {stile di visualizzazione k} fundamental (basis) dimensioni, the dimensional matrix is the {displaystyle ktimes n} matrice {stile di visualizzazione M} whose {stile di visualizzazione k} rows are the fundamental dimensions and whose {stile di visualizzazione n} columns are the dimensions of the variables: il {stile di visualizzazione (io,j)} th entry (dove {stile di visualizzazione 1leq ileq k} e {displaystyle 1leq jleq n} ) is the power of the {stile di visualizzazione i} th fundamental dimension in the {stile di visualizzazione j} th variable. The matrix can be interpreted as taking in a combination of the dimensions of the variable quantities and giving out the dimensions of this product in fundamental dimensions. So the {displaystyle ktimes 1} (colonna) vector that results from the multiplication {stile di visualizzazione M{inizio{bmatrice}un_{1}\punti virtuali a_{n}fine{bmatrice}}} consists of the units of {stile di visualizzazione q_{1}^{un_{1}},q_{2}^{un_{2}}cdots q_{n}^{un_{n}}} in terms of the {stile di visualizzazione k} fundamental independent (basis) units.[Nota 2] A dimensionless variable is a quantity that has all of its fundamental dimensions raised to the zeroth power (the zero vector of the vector space over the fundamental dimensions). The dimensionless variables are exactly the vectors that belong to the kernel {displaystyle ker M} of this matrix.[Nota 2] By the rank–nullity theorem, a system of {stile di visualizzazione n} vectors (matrix columns) in {stile di visualizzazione k} linearly independent dimensions (the rank of the matrix is the number of fundamental dimensions) leaves a nullity {displaystyle p=dim(ker M)} soddisfacente {displaystyle p=n-k,} where the nullity is the number of extraneous dimensions which may be chosen to be dimensionless.

The dimensionless variables can always be taken to be integer combinations of the dimensional variables (by clearing denominators). There is mathematically no natural choice of dimensionless variables; some choices of dimensionless variables are more physically meaningful, and these are what are ideally used.

The International System of Units defines {displaystyle k=7} base units, which are the ampere, kelvin, secondo, metre, kilogram, candela and mole. It is sometimes advantageous to introduce additional base units and techniques to refine the technique of dimensional analysis. (See orientational analysis and reference.[8]) Examples Speed This example is elementary but serves to demonstrate the procedure.

Suppose a car is driving at 100 km/h; how long does it take to go 200 km?

This question considers {stile di visualizzazione n=3} dimensioned variables: distance {stile di visualizzazione d,} time {stile di visualizzazione t,} e velocità {stile di visualizzazione v,} and we are seeking some law of the form {displaystyle t=operatorname {Duration} (v,d).} These variables admit a basis of {displaystyle k=2} dimensioni: time dimension {stile di visualizzazione T} and distance dimension {displaystyle D.} Thus there is {displaystyle p=n-k=3-2=1} dimensionless quantity.

The dimensional matrix is {stile di visualizzazione M={inizio{bmatrice}1&0&;;;1\0&1&-1end{bmatrice}}} in which the rows correspond to the basis dimensions {stile di visualizzazione D} e {stile di visualizzazione T,} and the columns to the considered dimensions {stile di visualizzazione D,T,{testo{ e }}V,} where the latter stands for the speed dimension. The elements of the matrix correspond to the powers to which the respective dimensions are to be raised. Per esempio, the third column {stile di visualizzazione (1,-1),} afferma che {displaystyle V=D^{0}T^{0}V^{1},} represented by the column vector {displaystyle mathbf {v} =[0,0,1],} is expressible in terms of the basis dimensions as {displaystyle V=D^{1}T^{-1}=D/T,} da {displaystyle Mmathbf {v} =[1,-1].} For a dimensionless constant {displaystyle pi =D^{un_{1}}T^{un_{2}}V^{un_{3}},} we are looking for vectors {displaystyle mathbf {un} =[un_{1},un_{2},un_{3}]} such that the matrix-vector product {displaystyle Mmathbf {un} } equals the zero vector {stile di visualizzazione [0,0].} In algebra lineare, the set of vectors with this property is known as the kernel (or nullspace) di (the linear map represented by) the dimensional matrix. In this particular case its kernel is one-dimensional. The dimensional matrix as written above is in reduced row echelon form, so one can read off a non-zero kernel vector to within a multiplicative constant: {displaystyle mathbf {un} ={inizio{bmatrice}-1\;;;1\;;;1\fine{bmatrice}}.} If the dimensional matrix were not already reduced, one could perform Gauss–Jordan elimination on the dimensional matrix to more easily determine the kernel. It follows that the dimensionless constant, replacing the dimensions by the corresponding dimensioned variables, may be written: {displaystyle pi =d^{-1}t^{1}v^{1}=tv/d.} Since the kernel is only defined to within a multiplicative constant, the above dimensionless constant raised to any arbitrary power yields another (equivalent) dimensionless constant.

Dimensional analysis has thus provided a general equation relating the three physical variables: {stile di visualizzazione F(pi )=0,} o, letting {stile di visualizzazione C} denote a zero of function {stile di visualizzazione F,} {displaystyle pi =C,} which can be written in the desired form (which recall was {displaystyle t=operatorname {Duration} (v,d)} ) come {displaystyle t=C{frac {d}{v}}.} The actual relationship between the three variables is simply {displaystyle d=vt.} In altre parole, in questo caso {stile di visualizzazione F} has one physically relevant root, and it is unity. The fact that only a single value of {stile di visualizzazione C} will do and that it is equal to 1 is not revealed by the technique of dimensional analysis.

The simple pendulum We wish to determine the period {stile di visualizzazione T} of small oscillations in a simple pendulum. It will be assumed that it is a function of the length {stile di visualizzazione L,} the mass {stile di visualizzazione M,} and the acceleration due to gravity on the surface of the Earth {stile di visualizzazione g,} which has dimensions of length divided by time squared. The model is of the form {stile di visualizzazione f(T,M,l,g)=0.} (Note that it is written as a relation, not as a function: {stile di visualizzazione T} is not written here as a function of {stile di visualizzazione M,l,{testo{ e }}g.} ) Ci sono {displaystyle k=3} fundamental physical dimensions in this equation: time {stile di visualizzazione t,} messa {stile di visualizzazione m,} and length {stile di visualizzazione ell ,} e {displaystyle n=4} dimensional variables, {stile di visualizzazione T,M,l,{testo{ e }}g.} Thus we need only {displaystyle p=n-k=4-3=1} dimensionless parameter, denotato da {stile di visualizzazione pi ,} and the model can be re-expressed as {stile di visualizzazione F(pi )=0,} dove {stile di visualizzazione pi } è dato da {displaystyle pi =T^{un_{1}}M^{un_{2}}L^{un_{3}}g^{un_{4}}} for some values of {stile di visualizzazione a_{1},un_{2},un_{3},un_{4}.} The dimensions of the dimensional quantities are: {displaystyle T=t,M=m,L=ell ,g=ell /t^{2}.} The dimensional matrix is: {displaystyle mathbf {M} ={inizio{bmatrice}1&0&0&-2\0&1&0&0\0&0&1&1end{bmatrice}}.} (The rows correspond to the dimensions {stile di visualizzazione t,m,} e {stile di visualizzazione ell ,} and the columns to the dimensional variables {stile di visualizzazione T,M,l,{testo{ e }}g.} Per esempio, the 4th column, {stile di visualizzazione (-2,0,1),} states that the {stile di visualizzazione g} variable has dimensions of {stile di visualizzazione t^{-2}m^{0}ell ^{1}.} ) We are looking for a kernel vector {displaystyle a=left[un_{1},un_{2},un_{3},un_{4}Giusto]} such that the matrix product of {displaystyle mathbf {M} } Su {stile di visualizzazione a} yields the zero vector {stile di visualizzazione [0,0,0].} The dimensional matrix as written above is in reduced row echelon form, so one can read off a kernel vector within a multiplicative constant: {displaystyle a={inizio{bmatrice}2\0\-1\1fine{bmatrice}}.} Were it not already reduced, one could perform Gauss–Jordan elimination on the dimensional matrix to more easily determine the kernel. It follows that the dimensionless constant may be written: {stile di visualizzazione {inizio{allineato}pi &=T^{2}M^{0}L^{-1}g^{1}\&=gT^{2}/Lend{allineato}}.} In fundamental terms: {displaystyle pi =(t)^{2}(m)^{0}(ell )^{-1}sinistra(ell /t^{2}Giusto)^{1}=1,} which is dimensionless. Since the kernel is only defined to within a multiplicative constant, if the above dimensionless constant is raised to any arbitrary power, it will yield another equivalent dimensionless constant.

In questo esempio, three of the four dimensional quantities are fundamental units, so the last (che è {stile di visualizzazione g} ) must be a combination of the previous. Nota che se {stile di visualizzazione a_{2}} (the coefficient of {stile di visualizzazione M} ) had been non-zero then there would be no way to cancel the {stile di visualizzazione M} value; dunque {stile di visualizzazione a_{2}} deve essere zero. Dimensional analysis has allowed us to conclude that the period of the pendulum is not a function of its mass {displaystyle M.} (In the 3D space of powers of mass, time, and distance, we can say that the vector for mass is linearly independent from the vectors for the three other variables. Up to a scaling factor, {stile di visualizzazione {vec {g}}+2{vec {T}}-{vec {l}}} is the only nontrivial way to construct a vector of a dimensionless parameter.) The model can now be expressed as: {displaystyle Fleft(gT^{2}/Lright)=0.} Assuming the zeroes of {stile di visualizzazione F} are discrete and that they are labelled {stile di visualizzazione C_{1},C_{2},ldot ,} then this implies that {displaystyle gT^{2}/L=C_{io}} for some zero {stile di visualizzazione C_{io}} of the function {stile di visualizzazione F.} If there is only one zero, chiamalo {stile di visualizzazione C,} poi {displaystyle gT^{2}/L=C.} It requires more physical insight or an experiment to show that there is indeed only one zero and that the constant is in fact given by {displaystyle C=4pi ^{2}.} For large oscillations of a pendulum, the analysis is complicated by an additional dimensionless parameter, the maximum swing angle. The above analysis is a good approximation as the angle approaches zero.

Other examples An example of dimensional analysis can be found for the case of the mechanics of a thin, solid and parallel-sided rotating disc. There are five variables involved which reduce to two non-dimensional groups. The relationship between these can be determined by numerical experiment using, Per esempio, the finite element method.[9] The theorem has also been used in fields other than physics, for instance in sport sciences.[10] See also Mathematics portal Physics portal Blast wave Dimensionless quantity Natural units Similitude (model) Reynolds number References Notes ^ When in applying the π–theorem there arises an arbitrary function of dimensionless numbers. ^ Salta su: a b If these basis units are {stile di visualizzazione b_{1},ldot ,b_{K}} e se {stile di visualizzazione q_{io}=m_{1io}b_{1}+cdot +m_{ki}b_{K}} per ogni {displaystyle 1leq ileq n} poi {stile di visualizzazione M={inizio{bmatrice}m_{11}&cdots &m_{1io}&cdots &m_{1n}\vdots &&vdots &&vdots \m_{k1}&cdots &m_{ki}&cdots &m_{kn}\fine{bmatrice}}} so that for instance, the units of {stile di visualizzazione q_{1}} in terms of these basis units are {stile di visualizzazione Mleft(sinistra[1 0 cdots 0right]^{nome operatore {T} }Giusto)={inizio{bmatrice}m_{11}\vdots \m_{k1}\fine{bmatrice}}.} For a concrete example, suppose that the {displaystyle k=2} fundamental units are meters {stile di visualizzazione b_{1}= m} and seconds {stile di visualizzazione b_{2}=s,} and that there are {stile di visualizzazione n=3} dimensional variables: {stile di visualizzazione q_{1}=m/s^{2},q_{2}=1/m,q_{3}=s/m.} By definition of vector addition and scalar multiplication in {stile di visualizzazione V,} {stile di visualizzazione q_{1}=ms^{-2}=1m+(-2)S,quad q_{2}=m^{-1}=(-1)m+0s,quad q_{3}=m^{-1}s=(-1)m+1s} affinché {stile di visualizzazione M={inizio{bmatrice}m_{11}&m_{12}&m_{13}\m_{21}&m_{22}&m_{23}\fine{bmatrice}}={inizio{bmatrice}1&-1&-1\-2&0&1\end{bmatrice}}.} Per definizione, the dimensionless units are those of the form {stile di visualizzazione m^{0}s^{0},} which are exactly the vectors in {displaystyle ker M=operatorname {span} sinistra{[1,-1,2]^{nome operatore {T} }Giusto}= sinistra{sinistra(q_{1}-q_{2}+2q_{3}Giusto)^{S}:peccato mathbb {Q} Giusto}.} This can be verified by a direct computation: {stile di visualizzazione q_{1}-q_{2}+2q_{3}= sinistra(ms^{-2}Giusto)^{1}+sinistra(m^{-1}Giusto)^{-1}+sinistra(sm^{-1}Giusto)^{2}=m^{1}s^{-2}+m^{1}+m^{-2}s^{2}=m^{1+1+(-2)}s^{-2+0+2}=m^{0}s^{0},} which is indeed dimensionless. Di conseguenza, if some physical law states that {stile di visualizzazione q_{1},q_{2},q_{3}} are necessarily related by a (presumably unknown) equation of the form {stile di visualizzazione deviato(q_{1},q_{2},q_{3}Giusto)=0} per alcuni (unknown) funzione {stile di visualizzazione f} insieme a {nome dell'operatore dello stile di visualizzazione {domain} fsubseteq mathbb {R} ^{3}} (questo è, the tuple {stile di visualizzazione a sinistra(q_{1},q_{2},q_{3}Giusto)} is necessarily a zero of {stile di visualizzazione f} ), then there exists some (also unknown) funzione {stile di visualizzazione F:mathbb {R} ^{1}a matematicabb {R} } that depends on only {displaystyle p=3-2=1} variable, the dimensionless variable {stile di visualizzazione pi _{1}:=q_{1}-q_{2}+2q_{3}=q_{1}q_{3}^{2}/q_{2}} (or any non-zero rational power {stile di visualizzazione {cappello {pi }}_{1}:=pi _{1}^{S}} di {stile di visualizzazione pi _{1},} dove {displaystyle 0neq sin mathbb {Q} } ), tale che {displaystyle Fleft(pi_{1}Giusto)=0} tiene (Se {stile di visualizzazione {cappello {pi }}_{1}:=pi _{1}^{S}} is used instead of {stile di visualizzazione pi _{1}} poi {stile di visualizzazione F} can be replaced with {stile di visualizzazione {cappello {F}}(X):=Fleft(x^{1/S}Giusto)} and once again {stile di visualizzazione {cappello {F}}sinistra({cappello {pi }}_{1}Giusto)=0} tiene). Thus in terms of the original variables, {displaystyle Fleft(q_{1}q_{3}^{2}/q_{2}Giusto)=0} must hold (in alternativa, if using {stile di visualizzazione {cappello {pi }}_{1}:=pi _{1}^{1/2}={mq {pi_{1}}}} per esempio, poi {stile di visualizzazione {cappello {F}}sinistra({mq {q_{1}q_{3}^{2}/q_{2}}}Giusto)=0} must hold). In altre parole, the Buckingham π theorem implies that {stile di visualizzazione q_{1}q_{3}^{2}/q_{2}in F^{-1}(0),} so that if it happens to be the case that this {stile di visualizzazione F} has exactly one zero, chiamalo {stile di visualizzazione C,} poi l'equazione {stile di visualizzazione q_{1}q_{3}^{2}/q_{2}=C} will necessarily hold (the theorem does not give information about what the exact value of the constant {stile di visualizzazione C} sarà, nor does it guarantee that {stile di visualizzazione F} has exactly one zero). Citations ^ Bertrand, J. (1878). "Sur l'homogénéité dans les formules de physique". Comptes Rendus. 86 (15): 916–920. ^ Rayleigh (1892). "On the question of the stability of the flow of liquids". Rivista filosofica. 34 (206): 59–70. doi:10.1080/14786449208620167. ^ Strutt, John William (1896). The Theory of Sound. vol. II (2nd ed.). Macmillan. ^ Quotes from Vaschy's article with his statement of the pi–theorem can be found in: Macagno, e. o. (1971). "Historico-critical review of dimensional analysis". Journal of the Franklin Institute. 292 (6): 391–402. doi:10.1016/0016-0032(71)90160-8. ^ Федерман, А. (1911). "О некоторых общих методах интегрирования уравнений с частными производными первого порядка". Известия Санкт-Петербургского политехнического института императора Петра Великого. Отдел техники, естествознания и математики. 16 (1): 97–155. (Federman A., On some general methods of integration of first-order partial differential equations, Proceedings of the Saint-Petersburg polytechnic institute. Section of technics, natural science, and mathematics) ^ Riabouchinsky, D. (1911). "Мéthode des variables de dimension zéro et son application en aérodynamique". L'Aérophile: 407–408. ^ Buckingham 1914. ^ Schlick, R.; Le Sergent, T. (2006). "Checking SCADE Models for Correct Usage of Physical Units". Computer Safety, Reliability, and Security. Appunti delle lezioni in Informatica. Berlino: Springer. 4166: 358–371. doi:10.1007/11875567_27. ISBN 978-3-540-45762-6. ^ Ramsay, Angus. "Dimensional Analysis and Numerical Experiments for a Rotating Disc". Ramsay Maunder Associates. Recuperato 15 aprile 2017. ^ Blondeau, J. (2020). "The influence of field size, goal size and number of players on the average number of goals scored per game in variants of football and hockey: the Pi-theorem applied to team sports". Journal of Quantitative Analysis in Sports. 17 (2): 145–154. doi:10.1515/jqas-2020-0009. S2CID 224929098. Bibliography Hanche-Olsen, Harald (2004). "Buckingham's pi-theorem" (PDF). NTNU. Retrieved April 9, 2007. Hart, Giorgio W. (1995). Multidimensional Analysis: Algebras and Systems for Science and Engineering. Springer. ISBN 978-0-387-94417-3. Kline, Stephen J. (1986). Similitude and Approximation Theory. Springer. ISBN 978-0-387-16518-9. Hartke, Jan-David (2019). "On Buckingham's Π-theorem". arXiv:1912.08744. Wan, Frederic Y.M. (1989). Mathematical Models and their Analysis. Harper & Row. ISBN 978-0-06-046902-3. Vignaux, G.A. (1991). "Dimensional analysis in data modelling" (PDF). Victoria University of Wellington. Recuperato a dicembre 15, 2005. Sheppard, Mike (2008). "Systematic Search for Expressions of Dimensionless Constants using the NIST database of Physical Constants". Archiviato dall'originale in poi 2012-09-28. Gibbings, J.C. (2011). Dimensional Analysis. Springer. ISBN 978-1-84996-316-9. Original sources Vaschy, UN. (1892). "Sur les lois de similitude en physique". Annali del telegrafo. 19: 25–28. Buckingham, e. (1914). "On physically similar systems; illustrations of the use of dimensional equations". Revisione fisica. 4 (4): 345–376. Bibcode:1914PhRv....4..345B. doi:10.1103/PhysRev.4.345. hdl:10338.dmlcz/101743. Buckingham, e. (1915). "The principle of similitude". Natura. 96 (2406): 396–397. Bibcode:1915Natur..96..396B. doi:10.1038/096396d0. S2CID 3956628. Buckingham, e. (1915). "Model experiments and the forms of empirical equations". Transactions of the American Society of Mechanical Engineers. 37: 263–296. Taylor, Sir G. (1950). "The Formation of a Blast Wave by a Very Intense Explosion. io. Theoretical Discussion". Proceedings of the Royal Society A. 201 (1065): 159–174. Bibcode:1950RSPSA.201..159T. doi:10.1098/rspa.1950.0049. S2CID 54070514. Taylor, Sir G. (1950). "The Formation of a Blast Wave by a Very Intense Explosion. II. The Atomic Explosion of 1945". Proceedings of the Royal Society A. 201 (1065): 175–186. Bibcode:1950RSPSA.201..175T. doi:10.1098/rspa.1950.0050. External links Some reviews and original sources on the history of pi theorem and the theory of similarity (in russo) Categorie: Dimensional analysisPhysics theorems

Se vuoi conoscere altri articoli simili a Buckingham π theorem puoi visitare la categoria Dimensional analysis.

Vai su

Utilizziamo cookie propri e di terze parti per migliorare l'esperienza dell'utente Maggiori informazioni