Bruck–Ryser–Chowla theorem

Bruck–Ryser–Chowla theorem (Redirected from Bruck–Chowla–Ryser theorem) Jump to navigation Jump to search The Bruck–Ryser–Chowla theorem is a result on the combinatorics of block designs that implies nonexistence of certain kinds of design. It states that if a (v, b, r, k, je)-design exists with v = b (a symmetric block design), alors: if v is even, then k − λ is a square; if v is odd, then the following Diophantine equation has a nontrivial solution: x2 − (k − λ)y2 − (−1)(v−1)/2 λ z2 = 0.

The theorem was proved in the case of projective planes by Bruck & Ryser (1949). It was extended to symmetric designs by Chowla & Ryser (1950).

Contenu 1 Projective planes 2 Connection with incidence matrices 3 Références 4 External links Projective planes In the special case of a symmetric design with λ = 1, C'est, a projective plane, the theorem (which in this case is referred to as the Bruck–Ryser theorem) can be stated as follows: If a finite projective plane of order q exists and q is congruent to 1 ou 2 (mode 4), then q must be the sum of two squares. Note that for a projective plane, the design parameters are v = b = q2 + q + 1, r = k = q + 1, λ = 1. Ainsi, v is always odd in this case.

Le théorème, par exemple, rules out the existence of projective planes of orders 6 et 14 but allows the existence of planes of orders 10 et 12. Since a projective plane of order 10 has been shown not to exist using a combination of coding theory and large-scale computer search,[1] the condition of the theorem is evidently not sufficient for the existence of a design. Cependant, no stronger general non-existence criterion is known.

Connection with incidence matrices The existence of a symmetric (v, b, r, k, je)-design is equivalent to the existence of a v × v incidence matrix R with elements 0 et 1 satisfying R RT = (k − λ)je + λJ where I is the v × v identity matrix and J is the v × v all-1 matrix. In essence, the Bruck–Ryser–Chowla theorem is a statement of the necessary conditions for the existence of a rational v × v matrix R satisfying this equation. En réalité, the conditions stated in the Bruck–Ryser–Chowla theorem are not merely necessary, but also sufficient for the existence of such a rational matrix R. They can be derived from the Hasse–Minkowski theorem on the rational equivalence of quadratic forms.

References ^ Browne, Malcolm W. (20 Décembre 1988), "Is a Math Proof a Proof If No One Can Check It?", The New York Times Bruck, R.H.; Frisson, H.J. (1949), "The nonexistence of certain finite projective planes", Revue canadienne de mathématiques, 1: 88–93, est ce que je:10.4153/cjm-1949-009-2 Chowla, S; Frisson, H.J. (1950), "Combinatorial problems", Revue canadienne de mathématiques, 2: 93–99, est ce que je:10.4153/cjm-1950-009-8 Lam, C. O. H. (1991), "The Search for a Finite Projective Plane of Order 10", Mensuel mathématique américain, 98 (4): 305–318, est ce que je:10.2307/2323798, JSTOR 2323798 van Lint, J.H., and R.M. Wilson (1992), A Course in Combinatorics. Cambridge, Eng.: la presse de l'Universite de Cambridge. Weissstein externe gauche, Éric W., "Bruck–Ryser–Chowla Theorem", MathWorld hide vte Incidence structures Representation Incidence matrixIncidence graph Fields Combinatorics Block designSteiner systemGeometry IncidenceProjective planeGraph theory HypergraphStatistics Blocking Configurations Complete quadrangleFano planeMöbius–Kantor configurationPappus configurationHesse configurationDesargues configurationReye configurationSchläfli double sixCremona–Richmond configurationKummer configurationGrünbaum–Rigby configurationKlein configurationDual Theorems Sylvester–Gallai theoremDe Bruijn–Erdős theoremSzemerédi–Trotter theoremBeck's theoremBruck–Ryser–Chowla theorem Applications Design of experimentsKirkman's schoolgirl problem Categories: Theorems in combinatoricsTheorems in projective geometryTheorems in statisticsDesign of experiments

Si vous voulez connaître d'autres articles similaires à Bruck–Ryser–Chowla theorem vous pouvez visiter la catégorie Theorems in combinatorics.

Laisser un commentaire

Votre adresse email ne sera pas publiée.


Nous utilisons nos propres cookies et ceux de tiers pour améliorer l'expérience utilisateur Plus d'informations