Bruck–Ryser–Chowla theorem

Bruck–Ryser–Chowla theorem (Redirected from Bruck–Chowla–Ryser theorem) Jump to navigation Jump to search The Bruck–Ryser–Chowla theorem is a result on the combinatorics of block designs that implies nonexistence of certain kinds of design. It states that if a (v, b, r, k, l)-design exists with v = b (a symmetric block design), dann: if v is even, then k − λ is a square; if v is odd, then the following Diophantine equation has a nontrivial solution: x2 − (k − λ)y2 − (−1)(v−1)/2 λ z2 = 0.

The theorem was proved in the case of projective planes by Bruck & Ryser (1949). It was extended to symmetric designs by Chowla & Ryser (1950).

Inhalt 1 Projective planes 2 Connection with incidence matrices 3 Verweise 4 External links Projective planes In the special case of a symmetric design with λ = 1, das ist, a projective plane, the theorem (which in this case is referred to as the Bruck–Ryser theorem) can be stated as follows: If a finite projective plane of order q exists and q is congruent to 1 oder 2 (Mod 4), then q must be the sum of two squares. Note that for a projective plane, the design parameters are v = b = q2 + q + 1, r = k = q + 1, λ = 1. Daher, v is always odd in this case.

Der Satz, zum Beispiel, rules out the existence of projective planes of orders 6 und 14 but allows the existence of planes of orders 10 und 12. Since a projective plane of order 10 has been shown not to exist using a combination of coding theory and large-scale computer search,[1] the condition of the theorem is evidently not sufficient for the existence of a design. Jedoch, no stronger general non-existence criterion is known.

Connection with incidence matrices The existence of a symmetric (v, b, r, k, l)-design is equivalent to the existence of a v × v incidence matrix R with elements 0 und 1 satisfying R RT = (k − λ)ich + λJ where I is the v × v identity matrix and J is the v × v all-1 matrix. In essence, the Bruck–Ryser–Chowla theorem is a statement of the necessary conditions for the existence of a rational v × v matrix R satisfying this equation. In der Tat, the conditions stated in the Bruck–Ryser–Chowla theorem are not merely necessary, but also sufficient for the existence of such a rational matrix R. They can be derived from the Hasse–Minkowski theorem on the rational equivalence of quadratic forms.

References ^ Browne, Malcolm W. (20 Dezember 1988), "Is a Math Proof a Proof If No One Can Check It?", The New York Times Bruck, R.H.; Schauer, H.J. (1949), "The nonexistence of certain finite projective planes", Kanadisches Journal für Mathematik, 1: 88–93, doi:10.4153/cjm-1949-009-2 Chowla, S.; Schauer, H.J. (1950), "Combinatorial problems", Kanadisches Journal für Mathematik, 2: 93–99, doi:10.4153/cjm-1950-009-8 Lam, C. W. H. (1991), "The Search for a Finite Projective Plane of Order 10", American Mathematical Monthly, 98 (4): 305–318, doi:10.2307/2323798, JSTOR 2323798 van Lint, J.H., and R.M. Wilson (1992), A Course in Combinatorics. Cambridge, Eng.: Cambridge University Press. External links Weisstein, Erich W., "Bruck–Ryser–Chowla Theorem", MathWorld hide vte Incidence structures Representation Incidence matrixIncidence graph Fields Combinatorics Block designSteiner systemGeometry IncidenceProjective planeGraph theory HypergraphStatistics Blocking Configurations Complete quadrangleFano planeMöbius–Kantor configurationPappus configurationHesse configurationDesargues configurationReye configurationSchläfli double sixCremona–Richmond configurationKummer configurationGrünbaum–Rigby configurationKlein configurationDual Theorems Sylvester–Gallai theoremDe Bruijn–Erdős theoremSzemerédi–Trotter theoremBeck's theoremBruck–Ryser–Chowla theorem Applications Design of experimentsKirkman's schoolgirl problem Categories: Theorems in combinatoricsTheorems in projective geometryTheorems in statisticsDesign of experiments

Wenn Sie andere ähnliche Artikel wissen möchten Bruck–Ryser–Chowla theorem Sie können die Kategorie besuchen Theorems in combinatorics.

Hinterlasse eine Antwort

Deine Email-Adresse wird nicht veröffentlicht.

Geh hinauf

Wir verwenden eigene Cookies und Cookies von Drittanbietern, um die Benutzererfahrung zu verbessern Mehr Informationen