Borel–Carathéodory theorem

Borel–Carathéodory theorem In mathematics, the Borel–Carathéodory theorem in complex analysis shows that an analytic function may be bounded by its real part. It is an application of the maximum modulus principle. It is named for Émile Borel and Constantin Carathéodory.

Statement of the theorem Let a function {style d'affichage f} be analytic on a closed disc of radius R centered at the origin. Suppose that r < R. Then, we have the following inequality: {displaystyle |f|_{r}leq {frac {2r}{R-r}}sup _{|z|leq R}operatorname {Re} f(z)+{frac {R+r}{R-r}}|f(0)|.} Here, the norm on the left-hand side denotes the maximum value of f in the closed disc: {displaystyle |f|_{r}=max _{|z|leq r}|f(z)|=max _{|z|=r}|f(z)|} (where the last equality is due to the maximum modulus principle). Proof Define A by {displaystyle A=sup _{|z|leq R}operatorname {Re} f(z).} If f is constant, the inequality is trivial since {displaystyle (R+r)/(R-r)>1} , so we may assume f is nonconstant. First let f(0) = 0. Since Re f is harmonic, Re f(0) is equal to the average of its values around any circle centered at 0. C'est-à-dire, {nom de l'opérateur de style d'affichage {Re} F(0)={frac {1}{2pi }}entier _{|z|=R}nom de l'opérateur {Re} F(z)dz.} Since f is regular and nonconstant, we have that Re f is also nonconstant. Since Re f(0) = 0, we must have Re {style d'affichage f(z)>0} for some z on the circle {style d'affichage |z|=R} , so we may take {displaystyle A>0} . Now f maps into the half-plane P to the left of the x=A line. Roughly, our goal is to map this half-plane to a disk, apply Schwarz's lemma there, and make out the stated inequality.

{displaystyle wmapsto w/A-1} sends P to the standard left half-plane. {displaystyle wmapsto R(w+1)/(w-1)} sends the left half-plane to the circle of radius R centered at the origin. The composite, which maps 0 à 0, is the desired map: {displaystyle wmapsto {frac {Rw}{w-2A}}.} From Schwarz's lemma applied to the composite of this map and f, Nous avons {style d'affichage {frac {|RF(z)|}{|F(z)-2UN|}}leq |z|.} Take |z| ≤ r. The above becomes {style d'affichage R|F(z)|leq r|F(z)-2UN|leq r|F(z)|+2Ar} alors {style d'affichage |F(z)|leq {frac {2Ar}{R-r}}} , as claimed. In the general case, we may apply the above to f(z)-F(0): {style d'affichage {commencer{aligné}|F(z)|-|F(0)|&leq |F(z)-F(0)|leq {frac {2r}{R-r}}souper _{|w|leq R}nom de l'opérateur {Re} (F(w)-F(0))\&leq {frac {2r}{R-r}}la gauche(souper _{|w|leq R}nom de l'opérateur {Re} F(w)+|F(0)|droit),fin{aligné}}} qui, when rearranged, gives the claim.

References Lang, Serge (1999). Complex Analysis (4e éd.). New York: Springer Verlag, Inc. ISBN 0-387-98592-1. Titchmarsh, E. C. (1938). The theory of functions. Presse universitaire d'Oxford. Catégories: Théorèmes en analyse complexe

Si vous voulez connaître d'autres articles similaires à Borel–Carathéodory theorem vous pouvez visiter la catégorie Théorèmes en analyse complexe.

Laisser un commentaire

Votre adresse email ne sera pas publiée.

Monter

Nous utilisons nos propres cookies et ceux de tiers pour améliorer l'expérience utilisateur Plus d'informations