Théorème de Bohr-Mollerup

Théorème de Bohr – Mollerup En analyse mathématique, le théorème de Bohr-Mollerup est un théorème prouvé par les mathématiciens danois Harald Bohr et Johannes Mollerup. Le théorème caractérise la fonction gamma, defined for x > 0 par {style d'affichage Gamma (X)=int _{0}^{infime }t ^{x-1}e ^{-t},dt} as the only positive function f , with domain on the interval x > 0, qui a simultanément les trois propriétés suivantes: F (1) = 1, and f (X + 1) = x f (X) for x > 0 and f is logarithmically convex.

Un traitement de ce théorème se trouve dans le livre d'Artin The Gamma Function, qui a été réimprimé par l'AMS dans un recueil d'écrits d'Artin.

Le théorème a été publié pour la première fois dans un manuel sur l'analyse complexe, comme Bohr et Mollerup pensaient qu'il avait déjà été prouvé.

Contenu 1 Déclaration 2 Preuve 3 Voir également 4 Références Énoncé Théorème de Bohr-Mollerup. C(X) is the only function that satisfies f (X + 1) = x f (X) avec bûche( F (X)) convex and also with f (1) = 1. Proof Let Γ(X) être une fonction avec les propriétés supposées établies ci-dessus: C(X + 1) = xC(X) et journal(C(X)) est convexe, et Γ(1) = 1. De Γ(X + 1) = xC(X) nous pouvons établir {style d'affichage Gamma (x+n)=(x+n-1)(x+n-2)(x+n-3)cdots (x+1)xGamma (X)} Le but de la stipulation que Γ(1) = 1 force le Γ(X + 1) = xC(X) propriété de dupliquer les factorielles des entiers afin que nous puissions conclure maintenant que Γ(n) = (n- 1)! si n ∈ N et si Γ(X) existe du tout. A cause de notre relation pour Γ(X + n), si nous pouvons bien comprendre Γ(X) pour 0 < x ≤ 1 then we understand Γ(x) for all values of x. For x1, x2, the slope S(x1, x2) of the line segment connecting the points (x1, log(Γ (x1))) and (x2, log(Γ (x2))) is monotonically increasing in each argument with x1 < x2 since we have stipulated that log(Γ(x)) is convex. Thus, we know that {displaystyle S(n-1,n)leq S(n,n+x)leq S(n,n+1)quad {text{for all }}xin (0,1].} After simplifying using the various properties of the logarithm, and then exponentiating (which preserves the inequalities since the exponential function is monotonically increasing) we obtain {displaystyle (n-1)^{x}(n-1)!leq Gamma (n+x)leq n^{x}(n-1)!.} From previous work this expands to {displaystyle (n-1)^{x}(n-1)!leq (x+n-1)(x+n-2)cdots (x+1)xGamma (x)leq n^{x}(n-1)!,} and so {displaystyle {frac {(n-1)^{x}(n-1)!}{(x+n-1)(x+n-2)cdots (x+1)x}}leq Gamma (x)leq {frac {n^{x}n!}{(x+n)(x+n-1)cdots (x+1)x}}left({frac {n+x}{n}}right).} The last line is a strong statement. In particular, it is true for all values of n. That is Γ(x) is not greater than the right hand side for any choice of n and likewise, Γ(x) is not less than the left hand side for any other choice of n. Each single inequality stands alone and may be interpreted as an independent statement. Because of this fact, we are free to choose different values of n for the RHS and the LHS. In particular, if we keep n for the RHS and choose n + 1 for the LHS we get: {displaystyle {begin{aligned}{frac {((n+1)-1)^{x}((n+1)-1)!}{(x+(n+1)-1)(x+(n+1)-2)cdots (x+1)x}}&leq Gamma (x)leq {frac {n^{x}n!}{(x+n)(x+n-1)cdots (x+1)x}}left({frac {n+x}{n}}right)\{frac {n^{x}n!}{(x+n)(x+n-1)cdots (x+1)x}}&leq Gamma (x)leq {frac {n^{x}n!}{(x+n)(x+n-1)cdots (x+1)x}}left({frac {n+x}{n}}right)end{aligned}}} It is evident from this last line that a function is being sandwiched between two expressions, a common analysis technique to prove various things such as the existence of a limit, or convergence. Let n → ∞: {displaystyle lim _{nto infty }{frac {n+x}{n}}=1} so the left side of the last inequality is driven to equal the right side in the limit and {displaystyle {frac {n^{x}n!}{(x+n)(x+n-1)cdots (x+1)x}}} is sandwiched in between. This can only mean that {displaystyle lim _{nto infty }{frac {n^{x}n!}{(x+n)(x+n-1)cdots (x+1)x}}=Gamma (x).} In the context of this proof this means that {displaystyle lim _{nto infty }{frac {n^{x}n!}{(x+n)(x+n-1)cdots (x+1)x}}} has the three specified properties belonging to Γ(x). Also, the proof provides a specific expression for Γ(x). And the final critical part of the proof is to remember that the limit of a sequence is unique. This means that for any choice of 0 < x ≤ 1 only one possible number Γ(x) can exist. Therefore, there is no other function with all the properties assigned to Γ(x). The remaining loose end is the question of proving that Γ(x) makes sense for all x where {displaystyle lim _{nto infty }{frac {n^{x}n!}{(x+n)(x+n-1)cdots (x+1)x}}} exists. The problem is that our first double inequality {displaystyle S(n-1,n)leq S(n+x,n)leq S(n+1,n)} was constructed with the constraint 0 < x ≤ 1. If, say, x > 1 alors le fait que S croît de façon monotone ferait de S(n + 1, n) < S(n + x, n), contradicting the inequality upon which the entire proof is constructed. However, {displaystyle {begin{aligned}Gamma (x+1)&=lim _{nto infty }xcdot left({frac {n^{x}n!}{(x+n)(x+n-1)cdots (x+1)x}}right){frac {n}{n+x+1}}\Gamma (x)&=left({frac {1}{x}}right)Gamma (x+1)end{aligned}}} which demonstrates how to bootstrap Γ(x) to all values of x where the limit is defined. See also Wielandt theorem References "Bohr–Mollerup theorem", Encyclopedia of Mathematics, EMS Press, 2001 [1994] Weisstein, Eric W. "Bohr–Mollerup Theorem". MathWorld. "Proof of Bohr–Mollerup theorem". PlanetMath. "Alternative proof of Bohr–Mollerup theorem". PlanetMath. Artin, Emil (1964). The Gamma Function. Holt, Rinehart, Winston. Rosen, Michael (2006). Exposition by Emil Artin: A Selection. American Mathematical Society. Mollerup, J., Bohr, H. (1922). Lærebog i Kompleks Analyse vol. III, Copenhagen. (Textbook in Complex Analysis) Categories: Gamma and related functionsTheorems in complex analysis

Si vous voulez connaître d'autres articles similaires à Théorème de Bohr-Mollerup vous pouvez visiter la catégorie Gamma and related functions.

Laisser un commentaire

Votre adresse email ne sera pas publiée.

Monter

Nous utilisons nos propres cookies et ceux de tiers pour améliorer l'expérience utilisateur Plus d'informations