Bertrand–Diguet–Puiseux theorem

Bertrand–Diguet–Puiseux theorem   (Redirected from Bertrand–Diquet–Puiseux theorem) Jump to navigation Jump to search In the mathematical study of the differential geometry of surfaces, the Bertrand–Diguet–Puiseux theorem expresses the Gaussian curvature of a surface in terms of the circumference of a geodesic circle, or the area of a geodesic disc. The theorem is named for Joseph Bertrand, Victor Puiseux, and Charles François Diguet.

Let p be a point on a smooth surface M. The geodesic circle of radius r centered at p is the set of all points whose geodesic distance from p is equal to r. Let C(r) denote the circumference of this circle, and A(r) denote the area of the disc contained within the circle. The Bertrand–Diguet–Puiseux theorem asserts that {displaystyle K(p)=lim _{rto 0^{+}}3{frac {2pi r-C(r)}{pi r^{3}}}=lim _{rto 0^{+}}12{frac {pi r^{2}-A(r)}{pi r^{4}}}.} The theorem is closely related to the Gauss–Bonnet theorem.

References Berger, Marcel (2004), A Panoramic View of Riemannian Geometry, Springer-Verlag, ISBN 3-540-65317-1 Bertrand, J; Diguet, C.F.; Puiseux, V (1848), "Démonstration d'un théorème de Gauss" (PDF), Journal de Mathématiques, 13: 80–90 Spivak, Michael (1999), A comprehensive introduction to differential geometry, Volume II, Publish or Perish Press, ISBN 0-914098-71-3 This differential geometry related article is a stub. You can help Wikipedia by expanding it.

Categories: Differential geometry of surfacesTheorems in differential geometryDifferential geometry stubs

Si quieres conocer otros artículos parecidos a Bertrand–Diguet–Puiseux theorem puedes visitar la categoría Differential geometry of surfaces.

Deja una respuesta

Tu dirección de correo electrónico no será publicada.


Utilizamos cookies propias y de terceros para mejorar la experiencia de usuario Más información