Théorème de Banach-Stone

Banach–Stone theorem In mathematics, the Banach–Stone theorem is a classical result in the theory of continuous functions on topological spaces, named after the mathematicians Stefan Banach and Marshall Stone.

In brief, the Banach–Stone theorem allows one to recover a compact Hausdorff space X from the Banach space structure of the space C(X) of continuous real- or complex-valued functions on X. If one is allowed to invoke the algebra structure of C(X) this is easy --- we can identify X with the spectrum of C(X), the set of algebra homomorphisms into the scalar field, equipped with the weak*-topology inherited from the dual space C(X)*. The Banach-Stone theorem avoids reference to multiplicative structure by recovering X from the extreme points of the unit ball of C(X)*.

Contenu 1 Déclaration 2 Généralisations 3 Voir également 4 References Statement For a compact Hausdorff space X, let C(X) denote the Banach space of continuous real- or complex-valued functions on X, equipped with the supremum norm ‖·‖∞.

Given compact Hausdorff spaces X and Y, suppose T : C(X) → C(Oui) is a surjective linear isometry. Then there exists a homeomorphism φ : Y → X and a function g ∈ C(Oui) avec {style d'affichage |g(y)|=1{mbox{ pour tous }}yin Y} tel que {style d'affichage (Tf)(y)= g(y)F(varphi (y)){mbox{ pour tous }}yin Y,fin C(X).} The case where X and Y are compact metric spaces is due to Banach,[1] while the extension to compact Hausdorff spaces is due to Stone.[2] En réalité, they both prove a slight generalization—they do not assume that T is linear, only that it is an isometry in the sense of metric spaces, and use the Mazur–Ulam theorem to show that T is affine, et donc {displaystyle T-T(0)} is a linear isometry.

Generalizations The Banach–Stone theorem has some generalizations for vector-valued continuous functions on compact, Hausdorff topological spaces. Par exemple, if E is a Banach space with trivial centralizer and X and Y are compact, then every linear isometry of C(X; E) onto C(Oui; E) is a strong Banach–Stone map.

A similar technique has also been used to recover a space X from the extreme points of the duals of some other spaces of functions on X.

The noncommutative analog of the Banach-Stone theorem is the folklore theorem that two unital C*-algebras are isomorphic if and only if they are completely isometric (c'est à dire., isometric at all matrix levels). Mere isometry is not enough, as shown by the existence of a C*-algebra that is not isomorphic to its opposite algebra (which trivially has the same Banach space structure).

See also Banach space – Normed vector space that is complete References ^ Théorème 3 of Banach, Stéphane (1932). Théorie des opérations linéaires. Varsovie: Instytut Matematyczny Polskiej Akademii Nauk. p. 170. ^ Theorem 83 of Stone, maréchal (1937). "Applications of the Theory of Boolean Rings to General Topology". Transactions de l'American Mathematical Society. 41 (3): 375–481. est ce que je:10.2307/1989788. Araujo, Jesús (2006). "The noncompact Banach–Stone theorem". Journal of Operator Theory. 55 (2): 285–294. ISSN 0379-4024. M 2242851.* Banach, Stéphane (1932). Théorie des Opérations Linéaires [Théorie des opérations linéaires] (PDF). Monographies mathématiques (en français). Volume. 1. Varsovie: Subvention du Fonds National de la Culture. Zbl 0005.20901. Archivé de l'original (PDF) sur 2014-01-11. Récupéré 2020-07-11. show vte Functional analysis (sujets – glossaire) show vte Banach space topics Categories: Continuous mappingsOperator theoryTheorems in functional analysis

Si vous voulez connaître d'autres articles similaires à Théorème de Banach-Stone vous pouvez visiter la catégorie Continuous mappings.

Laisser un commentaire

Votre adresse email ne sera pas publiée.

Monter

Nous utilisons nos propres cookies et ceux de tiers pour améliorer l'expérience utilisateur Plus d'informations