Baire category theorem

Baire category theorem The Baire category theorem (BCT) is an important result in general topology and functional analysis. The theorem has two forms, each of which gives sufficient conditions for a topological space to be a Baire space (a topological space such that the intersection of countably many dense open sets is still dense).

Versions of Baire category theorem were first proved independently in 1897 e 1899 by Osgood and Baire respectively. This theorem says that every complete metric space is a Baire space.[1] Contenuti 1 Dichiarazione 2 Relation to the axiom of choice 3 Uses 4 Prova 5 Guarda anche 6 Citazioni 7 Riferimenti 8 External links Statement A Baire space is a topological space with the property that for each countable collection of open dense sets {stile di visualizzazione U_{1},U_{2},ldot ,} their intersection {textstyle bigcap _{nin mathbb {N} }U_{n}} is dense.

(BCT1) Every complete pseudometric space is a Baire space.[2] Thus every completely metrizable topological space is a Baire space. Più generalmente, every topological space that is homeomorphic to an open subset of a complete pseudometric space is a Baire space. (BCT2) Every locally compact Hausdorff space is a Baire space. The proof is similar to the preceding statement; the finite intersection property takes the role played by completeness.

Neither of these statements directly implies the other, since there are complete metric spaces that are not locally compact (the irrational numbers with the metric defined below; anche, any Banach space of infinite dimension), and there are locally compact Hausdorff spaces that are not metrizable (per esempio, any uncountable product of non-trivial compact Hausdorff spaces is such; anche, several function spaces used in functional analysis; the uncountable Fort space). See Steen and Seebach in the references below.

(BCT3) A non-empty complete metric space with nonempty interior, or any of its subsets with nonempty interior, is not the countable union of nowhere-dense sets.

This formulation is equivalent to BCT1 and is sometimes more useful in applications. Anche: if a non-empty complete metric space is the countable union of closed sets, then one of these closed sets has non-empty interior.

Relation to the axiom of choice The proof of BCT1 for arbitrary complete metric spaces requires some form of the axiom of choice; and in fact BCT1 is equivalent over ZF to the axiom of dependent choice, a weak form of the axiom of choice.[3] A restricted form of the Baire category theorem, in which the complete metric space is also assumed to be separable, is provable in ZF with no additional choice principles.[4] This restricted form applies in particular to the real line, the Baire space {displaystyle omega ^{omega },} the Cantor space {stile di visualizzazione 2 ^{omega },} and a separable Hilbert space such as the {stile di visualizzazione L^{p}-} spazio {stile di visualizzazione L^{2}sinistra(mathbb {R} ^{n}Giusto).} Uses BCT1 is used in functional analysis to prove the open mapping theorem, the closed graph theorem and the uniform boundedness principle.

BCT1 also shows that every complete metric space with no isolated points is uncountable. (Se {stile di visualizzazione X} is a countable complete metric space with no isolated points, then each singleton {stile di visualizzazione {X}} in {stile di visualizzazione X} is nowhere dense, e così {stile di visualizzazione X} is of first category in itself.) In particolare, this proves that the set of all real numbers is uncountable.

BCT1 shows that each of the following is a Baire space: Lo spazio {displaystyle mathbb {R} } of real numbers The irrational numbers, with the metric defined by {stile di visualizzazione d(X,y)={tfrac {1}{n+1}},} dove {stile di visualizzazione n} is the first index for which the continued fraction expansions of {stile di visualizzazione x} e {stile di visualizzazione y} differ (this is a complete metric space) The Cantor set By BCT2, every finite-dimensional Hausdorff manifold is a Baire space, since it is locally compact and Hausdorff. This is so even for non-paracompact (hence nonmetrizable) manifolds such as the long line.

BCT is used to prove Hartogs's theorem, a fundamental result in the theory of several complex variables.

BCT3 is used to prove that a Banach space cannot have countably infinite dimension.

Proof The following is a standard proof that a complete pseudometric space {stile di visualizzazione X} is a Baire space.

Permettere {stile di visualizzazione U_{1},U_{2},ldot } be a countable collection of open dense subsets. It remains to show that the intersection {stile di visualizzazione U_{1}cappuccio U_{2}cap ldots } is dense. A subset is dense if and only if every nonempty open subset intersects it. Thus to show that the intersection is dense, it suffices to show that any nonempty open subset {stile di visualizzazione W.} di {stile di visualizzazione X} has some point {stile di visualizzazione x} in common with all of the {stile di visualizzazione U_{n}} . Perché {stile di visualizzazione U_{1}} is dense, {stile di visualizzazione W.} intersects {stile di visualizzazione U_{1};} consequently, esiste un punto {stile di visualizzazione x_{1}} e un numero {stile di visualizzazione 0m,} e quindi {stile di visualizzazione a sinistra(X_{n}Giusto)} converges to some limit {stile di visualizzazione x} by completeness. Se {stile di visualizzazione n} is a positive integer then {stile di visualizzazione xin {sopra {B}}sinistra(X_{n},r_{n}Giusto)} (because this set is closed). così {displaystyle xin W} e {displaystyle xin U_{n}} per tutti {displaystyle n.} {stile di visualizzazione quadrato nero } There is an alternative proof by M. Baker for the proof of the theorem using Choquet's game.[5] See also Meager set Nowhere dense set – Mathematical set whose closure has empty interior Property of Baire – Difference of an open set by a meager set Citations ^ Haworth & McCoy 1977, p. 5. ^ Narici & Beckenstein 2011, pp. 371–423. ^ Blair 1977. ^ Levy 2002, p. 212. ^ Baker 2014. References Baire, R. (1899). "Sur les fonctions de variables réelles". Anna. Di Mat. 3: 1–123. Baker, Matt (Luglio 7, 2014). "Real Numbers and Infinite Games, Part II: The Choquet game and the Baire Category Theorem". Matt Baker's Math Blog. Blair, Charles E. (1977). "The Baire category theorem implies the principle of dependent choices". Toro. Accad. Polon. Sci. Sér. Sci. Matematica. Astron. Phys. 25 (10): 933–934. Gamelin, Theodore W.; Verde, Robert Everist. Introduction to Topology (2nd ed.). Dover. Levy, Azriel (2002) [First published 1979]. Basic Set Theory (Reprinted ed.). Dover. ISBN 0-486-42079-5. Narici, Lawrence; Beckenstein, Edoardo (2011). Spazi vettoriali topologici. Matematica pura e applicata (Seconda ed.). Boca Raton, FL: CRC Press. ISBN 978-1584888666. OCLC 144216834. Schechter, Eric (1996). Manuale di analisi e dei suoi fondamenti. San Diego, circa: Stampa accademica. ISBN 978-0-12-622760-4. OCLC 175294365. Steen, Lynn Arthur; Seebach, J. Arthur Jr (1978). Counterexamples in Topology. New York: Springer-Verlag. Reprinted by Dover Publications, New York, 1995. ISBN 0-486-68735-X (Dover edition). Tao, T. (1 febbraio 2009). "245B, Appunti 9: The Baire category theorem and its Banach space consequence". Haworth, R. C.; McCoy, R. UN. (1977), Baire Spaces, Warszawa: Instytut Matematyczny Polskiej Akademi Nauk External links Encyclopaedia of Mathematics article on Baire theorem Categories: Functional analysisGeneral topologyTheorems in topology

Se vuoi conoscere altri articoli simili a Baire category theorem puoi visitare la categoria Analisi funzionale.

lascia un commento

L'indirizzo email non verrà pubblicato.

Vai su

Utilizziamo cookie propri e di terze parti per migliorare l'esperienza dell'utente Maggiori informazioni