Théorème des catégories de Baire

Baire category theorem The Baire category theorem (BCT) is an important result in general topology and functional analysis. The theorem has two forms, each of which gives sufficient conditions for a topological space to be a Baire space (a topological space such that the intersection of countably many dense open sets is still dense).

Versions of Baire category theorem were first proved independently in 1897 et 1899 by Osgood and Baire respectively. This theorem says that every complete metric space is a Baire space.[1] Contenu 1 Déclaration 2 Relation to the axiom of choice 3 Uses 4 Preuve 5 Voir également 6 Citations 7 Références 8 External links Statement A Baire space is a topological space with the property that for each countable collection of open dense sets {style d'affichage U_{1},U_{2},ldots ,} their intersection {textstyle bigcap _{nin mathbb {N} }U_{n}} is dense.

(BCT1) Every complete pseudometric space is a Baire space.[2] Thus every completely metrizable topological space is a Baire space. Plus généralement, every topological space that is homeomorphic to an open subset of a complete pseudometric space is a Baire space. (BCT2) Every locally compact Hausdorff space is a Baire space. The proof is similar to the preceding statement; the finite intersection property takes the role played by completeness.

Neither of these statements directly implies the other, since there are complete metric spaces that are not locally compact (the irrational numbers with the metric defined below; aussi, any Banach space of infinite dimension), and there are locally compact Hausdorff spaces that are not metrizable (par exemple, any uncountable product of non-trivial compact Hausdorff spaces is such; aussi, several function spaces used in functional analysis; the uncountable Fort space). See Steen and Seebach in the references below.

(BCT3) A non-empty complete metric space with nonempty interior, or any of its subsets with nonempty interior, is not the countable union of nowhere-dense sets.

This formulation is equivalent to BCT1 and is sometimes more useful in applications. Aussi: if a non-empty complete metric space is the countable union of closed sets, then one of these closed sets has non-empty interior.

Relation to the axiom of choice The proof of BCT1 for arbitrary complete metric spaces requires some form of the axiom of choice; and in fact BCT1 is equivalent over ZF to the axiom of dependent choice, a weak form of the axiom of choice.[3] A restricted form of the Baire category theorem, in which the complete metric space is also assumed to be separable, is provable in ZF with no additional choice principles.[4] This restricted form applies in particular to the real line, the Baire space {displaystyle omega ^{oméga },} the Cantor space {style d'affichage 2 ^{oméga },} and a separable Hilbert space such as the {displaystyle L^{p}-} espace {displaystyle L^{2}la gauche(mathbb {R} ^{n}droit).} Uses BCT1 is used in functional analysis to prove the open mapping theorem, the closed graph theorem and the uniform boundedness principle.

BCT1 also shows that every complete metric space with no isolated points is uncountable. (Si {style d'affichage X} is a countable complete metric space with no isolated points, then each singleton {style d'affichage {X}} dans {style d'affichage X} is nowhere dense, et donc {style d'affichage X} is of first category in itself.) En particulier, this proves that the set of all real numbers is uncountable.

BCT1 shows that each of the following is a Baire space: L'espace {style d'affichage mathbb {R} } of real numbers The irrational numbers, with the metric defined by {displaystyle d(X,y)={tfrac {1}{n+1}},} où {displaystyle n} is the first index for which the continued fraction expansions of {style d'affichage x} et {style d'affichage y} differ (this is a complete metric space) The Cantor set By BCT2, every finite-dimensional Hausdorff manifold is a Baire space, since it is locally compact and Hausdorff. This is so even for non-paracompact (hence nonmetrizable) manifolds such as the long line.

BCT is used to prove Hartogs's theorem, a fundamental result in the theory of several complex variables.

BCT3 is used to prove that a Banach space cannot have countably infinite dimension.

Proof The following is a standard proof that a complete pseudometric space {style d'affichage X} is a Baire space.

Laisser {style d'affichage U_{1},U_{2},ldots } be a countable collection of open dense subsets. It remains to show that the intersection {style d'affichage U_{1}casquette U_{2}cap ldots } is dense. A subset is dense if and only if every nonempty open subset intersects it. Thus to show that the intersection is dense, it suffices to show that any nonempty open subset {style d'affichage W.} de {style d'affichage X} has some point {style d'affichage x} in common with all of the {style d'affichage U_{n}} . Car {style d'affichage U_{1}} is dense, {style d'affichage W.} intersects {style d'affichage U_{1};} consequently, il existe un point {style d'affichage x_{1}} and a number {style d'affichage 0m,} et donc {style d'affichage à gauche(X_{n}droit)} converges to some limit {style d'affichage x} by completeness. Si {displaystyle n} is a positive integer then {style d'affichage xin {surligner {B}}la gauche(X_{n},r_{n}droit)} (because this set is closed). Ainsi {displaystyle xin W} et {displaystyle xin U_{n}} pour tous {displaystyle n.} {displaystyle blacksquare } There is an alternative proof by M. Baker for the proof of the theorem using Choquet's game.[5] See also Meager set Nowhere dense set – Mathematical set whose closure has empty interior Property of Baire – Difference of an open set by a meager set Citations ^ Haworth & McCoy 1977, p. 5. ^ Narici & Beckenstein 2011, pp. 371–423. ^ Blair 1977. ^ Levy 2002, p. 212. ^ Baker 2014. References Baire, R. (1899). "Sur les fonctions de variables réelles". Anne. Di Mat. 3: 1–123. Baker, Matt (Juillet 7, 2014). "Real Numbers and Infinite Games, Part II: The Choquet game and the Baire Category Theorem". Matt Baker's Math Blog. Blair, Charles E. (1977). "The Baire category theorem implies the principle of dependent choices". Taureau. Acad. Polon. SCI. Sér. SCI. Math. Astron. Physique. 25 (10): 933–934. Gamelin, Theodore W.; Green, Robert Everist. Introduction to Topology (2sd éd.). Douvres. Levy, Azriel (2002) [First published 1979]. Basic Set Theory (Reprinted ed.). Douvres. ISBN 0-486-42079-5. Narines, Laurent; Beckenstein, Edouard (2011). Espaces vectoriels topologiques. Mathématiques pures et appliquées (Deuxième éd.). Boca Ratón, Floride: Presse du CRC. ISBN 978-1584888666. OCLC 144216834. Schechter, Éric (1996). Handbook of Analysis and Its Foundations. San Diego, Californie: Presse académique. ISBN 978-0-12-622760-4. OCLC 175294365. Steen, Lynn Arthur; Seebach, J. Arthur Jr (1978). Counterexamples in Topology. New York: Springer Verlag. Reprinted by Dover Publications, New York, 1995. ISBN 0-486-68735-X (Dover edition). Tao, J. (1 Février 2009). "245B, Remarques 9: The Baire category theorem and its Banach space consequence". Haworth, R. C; McCoy, R. UN. (1977), Baire Spaces, Varsovie: Instytut Matematyczny Polskiej Akademi Nauk External links Encyclopaedia of Mathematics article on Baire theorem Categories: Functional analysisGeneral topologyTheorems in topology

Si vous voulez connaître d'autres articles similaires à Théorème des catégories de Baire vous pouvez visiter la catégorie Analyse fonctionnelle.

Laisser un commentaire

Votre adresse email ne sera pas publiée.

Monter

Nous utilisons nos propres cookies et ceux de tiers pour améliorer l'expérience utilisateur Plus d'informations